SpeechT5 TTS Swedish

This model is a fine-tuned version of microsoft/speecht5_tts on the Common Voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4621

Model description

Swedish SpeechT5 model trained on Swedish language in Common Voice. Example on how to implement the model below. Test the model yourself at https://huggingface.co/spaces/GreenCounsel/SpeechT5-sv (not possible to run pipeline inference at Huggingface).

#pip install datasets soundfile 
#pip install transformers
#pip install sentencepiece

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed
import torch

processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("GreenCounsel/speecht5_tts_common_voice_5_sv")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

repl = [
    ('Ä', 'ae'),
    ('Å', 'o'),
    ('Ö', 'oe'),
    ('ä', 'ae'),
    ('å', 'o'),
    ('ö', 'oe'),
    ('ô','oe'),
    ('-',''),
    ('‘',''),
    ('’',''),
    ('“',''),
    ('”',''),

]

from datasets import load_dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")

speaker_embeddings = torch.tensor(embeddings_dataset[7000]["xvector"]).unsqueeze(0)
set_seed(555)

text="Förstår du vad han menar?"
for src, dst in repl:
       text = text.replace(src, dst)
inputs = processor(text=text, return_tensors="pt")

speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

import soundfile as sf
sf.write("output.wav", speech.numpy(), samplerate=16000)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.5349 4.8 1000 0.4953
0.5053 9.59 2000 0.4714
0.5032 14.39 3000 0.4646
0.4958 19.18 4000 0.4621

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.

Dataset used to train GreenCounsel/speecht5_tts_common_voice_5_sv

Space using GreenCounsel/speecht5_tts_common_voice_5_sv 1