distilbert-classn-LinearAlg-finetuned-span-width-3
This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0465
- Accuracy: 0.7222
- F1: 0.7251
- Precision: 0.7350
- Recall: 0.7222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
5.0331 | 0.6849 | 50 | 2.4889 | 0.0476 | 0.0310 | 0.0241 | 0.0476 |
4.8321 | 1.3699 | 100 | 2.4703 | 0.0794 | 0.0509 | 0.0396 | 0.0794 |
4.8811 | 2.0548 | 150 | 2.4370 | 0.0873 | 0.0587 | 0.0487 | 0.0873 |
4.8198 | 2.7397 | 200 | 2.4201 | 0.0952 | 0.0662 | 0.0670 | 0.0952 |
4.7571 | 3.4247 | 250 | 2.4151 | 0.1190 | 0.0876 | 0.1070 | 0.1190 |
4.6927 | 4.1096 | 300 | 2.3845 | 0.1270 | 0.1051 | 0.1038 | 0.1270 |
4.607 | 4.7945 | 350 | 2.3643 | 0.1508 | 0.1431 | 0.1732 | 0.1508 |
4.5543 | 5.4795 | 400 | 2.3641 | 0.1508 | 0.1376 | 0.1467 | 0.1508 |
4.2468 | 6.1644 | 450 | 2.2960 | 0.1984 | 0.1655 | 0.1800 | 0.1984 |
4.1548 | 6.8493 | 500 | 2.1901 | 0.2381 | 0.2339 | 0.3055 | 0.2381 |
3.7031 | 7.5342 | 550 | 2.0601 | 0.3571 | 0.3299 | 0.4862 | 0.3571 |
3.4466 | 8.2192 | 600 | 2.0129 | 0.3651 | 0.3678 | 0.4649 | 0.3651 |
3.0481 | 8.9041 | 650 | 1.8144 | 0.4365 | 0.4292 | 0.4630 | 0.4365 |
2.5507 | 9.5890 | 700 | 1.6802 | 0.4921 | 0.4820 | 0.4894 | 0.4921 |
2.1803 | 10.2740 | 750 | 1.5281 | 0.5635 | 0.5703 | 0.6068 | 0.5635 |
1.7031 | 10.9589 | 800 | 1.4110 | 0.5714 | 0.5538 | 0.5561 | 0.5714 |
1.4117 | 11.6438 | 850 | 1.3102 | 0.6349 | 0.6388 | 0.6649 | 0.6349 |
1.0765 | 12.3288 | 900 | 1.2092 | 0.6746 | 0.6693 | 0.6834 | 0.6746 |
0.8571 | 13.0137 | 950 | 1.2143 | 0.6746 | 0.6679 | 0.6859 | 0.6746 |
0.6671 | 13.6986 | 1000 | 1.1043 | 0.6905 | 0.6811 | 0.6961 | 0.6905 |
0.5448 | 14.3836 | 1050 | 1.0635 | 0.7063 | 0.7057 | 0.7239 | 0.7063 |
0.419 | 15.0685 | 1100 | 1.0836 | 0.7381 | 0.7366 | 0.7522 | 0.7381 |
0.3435 | 15.7534 | 1150 | 1.0320 | 0.7063 | 0.7130 | 0.7487 | 0.7063 |
0.2654 | 16.4384 | 1200 | 1.0282 | 0.7063 | 0.7026 | 0.7209 | 0.7063 |
0.1986 | 17.1233 | 1250 | 1.0172 | 0.7063 | 0.7076 | 0.7218 | 0.7063 |
0.1714 | 17.8082 | 1300 | 1.0305 | 0.7302 | 0.7297 | 0.7572 | 0.7302 |
0.118 | 18.4932 | 1350 | 1.0045 | 0.7302 | 0.7293 | 0.7456 | 0.7302 |
0.1293 | 19.1781 | 1400 | 1.0415 | 0.7381 | 0.7402 | 0.7566 | 0.7381 |
0.0934 | 19.8630 | 1450 | 1.0429 | 0.7143 | 0.7183 | 0.7376 | 0.7143 |
0.0598 | 20.5479 | 1500 | 1.0438 | 0.7302 | 0.7310 | 0.7397 | 0.7302 |
0.0651 | 21.2329 | 1550 | 1.0299 | 0.7143 | 0.7187 | 0.7335 | 0.7143 |
0.0618 | 21.9178 | 1600 | 1.0538 | 0.7143 | 0.7185 | 0.7313 | 0.7143 |
0.0664 | 22.6027 | 1650 | 1.0280 | 0.7381 | 0.7394 | 0.7552 | 0.7381 |
0.0662 | 23.2877 | 1700 | 1.0319 | 0.7302 | 0.7320 | 0.7426 | 0.7302 |
0.0315 | 23.9726 | 1750 | 1.0467 | 0.7222 | 0.7251 | 0.7350 | 0.7222 |
0.0462 | 24.6575 | 1800 | 1.0465 | 0.7222 | 0.7251 | 0.7350 | 0.7222 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Heather-Driver/distilbert-classn-LinearAlg-finetuned-span-width-3
Base model
distilbert/distilbert-base-cased
Quantized
dslim/distilbert-NER