AI-VS-REAL-IMAGE-DETECTION

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1088
  • Accuracy: 0.9584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3177 1.0 240 0.1919 0.9218
0.148 2.0 481 0.1288 0.9505
0.113 3.0 722 0.1188 0.9539
0.0953 3.99 960 0.1088 0.9584

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
880
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
Drag image file here or click to browse from your device

Model tree for Hemg/AI-VS-REAL-IMAGE-DETECTION

Finetuned
(1911)
this model