turkish-hs-2class-prediction

This model is a fine-tuned version of dbmdz/bert-base-turkish-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5811
  • Accuracy: 0.8879
  • Macro F1: 0.8829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
0.5915 0.1460 100 0.4860 0.7703 0.7399
0.4414 0.2920 200 0.3925 0.8122 0.8044
0.3889 0.4380 300 0.3714 0.8323 0.8180
0.3713 0.5839 400 0.3467 0.8487 0.8376
0.3442 0.7299 500 0.3240 0.8569 0.8505
0.3427 0.8759 600 0.3084 0.8678 0.8612
0.3295 1.0219 700 0.3067 0.8651 0.8598
0.282 1.1679 800 0.3136 0.8678 0.8631
0.29 1.3139 900 0.3050 0.8696 0.8604
0.2993 1.4599 1000 0.3068 0.8660 0.8614
0.2835 1.6058 1100 0.2951 0.8769 0.8697
0.2751 1.7518 1200 0.3079 0.8742 0.8694
0.2717 1.8978 1300 0.2912 0.8806 0.8732
0.2615 2.0438 1400 0.2887 0.8833 0.8779
0.2413 2.1898 1500 0.3005 0.8824 0.8779
0.2446 2.3358 1600 0.3081 0.8788 0.8742
0.2022 2.4818 1700 0.3216 0.8815 0.8754
0.245 2.6277 1800 0.3109 0.8861 0.8812
0.2341 2.7737 1900 0.3369 0.8742 0.8712
0.239 2.9197 2000 0.2988 0.8879 0.8828
0.2228 3.0657 2100 0.3174 0.8824 0.8751
0.1819 3.2117 2200 0.3371 0.8815 0.8747
0.1841 3.3577 2300 0.3331 0.8861 0.8810
0.2208 3.5036 2400 0.3237 0.8906 0.8864
0.1934 3.6496 2500 0.3337 0.8897 0.8852
0.1947 3.7956 2600 0.3446 0.8861 0.8798
0.2043 3.9416 2700 0.3472 0.8888 0.8836
0.154 4.0876 2800 0.3549 0.8888 0.8842
0.1657 4.2336 2900 0.3664 0.8833 0.8764
0.1456 4.3796 3000 0.3905 0.8879 0.8829
0.1774 4.5255 3100 0.3801 0.8861 0.8807
0.1971 4.6715 3200 0.3943 0.8842 0.8796
0.182 4.8175 3300 0.3607 0.8906 0.8855
0.1751 4.9635 3400 0.3829 0.8879 0.8828
0.123 5.1095 3500 0.4142 0.8833 0.8776
0.1678 5.2555 3600 0.4128 0.8888 0.8833
0.1339 5.4015 3700 0.4287 0.8879 0.8820
0.164 5.5474 3800 0.4406 0.8842 0.8798
0.1521 5.6934 3900 0.4191 0.8906 0.8855
0.1476 5.8394 4000 0.4343 0.8806 0.8750
0.171 5.9854 4100 0.4305 0.8861 0.8802
0.1171 6.1314 4200 0.4552 0.8824 0.8780
0.1237 6.2774 4300 0.4561 0.8870 0.8808
0.1261 6.4234 4400 0.4696 0.8833 0.8778
0.1345 6.5693 4500 0.4848 0.8888 0.8830
0.1172 6.7153 4600 0.5006 0.8842 0.8797
0.1574 6.8613 4700 0.4770 0.8833 0.8782
0.1144 7.0073 4800 0.4923 0.8851 0.8803
0.1129 7.1533 4900 0.5090 0.8861 0.8811
0.1086 7.2993 5000 0.5437 0.8879 0.8833
0.1155 7.4453 5100 0.5360 0.8861 0.8814
0.121 7.5912 5200 0.5260 0.8851 0.8790
0.0984 7.7372 5300 0.5583 0.8806 0.8756
0.1267 7.8832 5400 0.5423 0.8861 0.8809
0.1087 8.0292 5500 0.5492 0.8879 0.8832
0.1117 8.1752 5600 0.5604 0.8851 0.8808
0.112 8.3212 5700 0.5614 0.8833 0.8784
0.1037 8.4672 5800 0.5707 0.8815 0.8773
0.0813 8.6131 5900 0.5736 0.8806 0.8761
0.1034 8.7591 6000 0.5672 0.8842 0.8793
0.0985 8.9051 6100 0.5761 0.8824 0.8778
0.1043 9.0511 6200 0.5739 0.8833 0.8785
0.082 9.1971 6300 0.5752 0.8851 0.8802
0.1019 9.3431 6400 0.5816 0.8815 0.8767
0.0743 9.4891 6500 0.5814 0.8842 0.8793
0.1045 9.6350 6600 0.5843 0.8815 0.8767
0.0743 9.7810 6700 0.5831 0.8833 0.8784
0.1138 9.9270 6800 0.5811 0.8879 0.8829

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Safetensors
Model size
112M params
Tensor type
F32
·
Inference Providers NEW

Model tree for HrantDinkFoundation/turkish-hs-2class-prediction

Finetuned
(20)
this model