distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.7771
- Accuracy: 0.9135
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.2843 | 1.0 | 318 | 3.2793 | 0.7448 |
2.6208 | 2.0 | 636 | 1.8750 | 0.8297 |
1.5453 | 3.0 | 954 | 1.1565 | 0.8919 |
1.0141 | 4.0 | 1272 | 0.8628 | 0.9090 |
0.795 | 5.0 | 1590 | 0.7771 | 0.9135 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0
- Datasets 2.2.2
- Tokenizers 0.10.3
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.