|
--- |
|
{} |
|
--- |
|
## UniTTS |
|
|
|
### Overview |
|
we introduce UniTTS and [DistilCodec](https://github.com/IDEA-Emdoor-Lab/DistilCodec) . DistilCodec is a single-codebook audio codec, which has 32768 codes, and the utilization of the codebook achieves nearly 100\%. UniTTS leverages DistilCodec for audio discretization, while its backbone network adopts Qwen2.5-7B to model relationships between audio tokens. |
|
|
|
Our main contributions are summarized as follows: |
|
|
|
- DistilCodec: We propose a training methodology that enables the distillation of multi-codebook Neural Audio Codecs(NAC) into single-codebook NAC. Through this approach, we have developed DistilCodec - a single-codebook NAC containing 32,768 codes that achieves 100\% utilization with balanced code distribution. Notably, DistilCodec employs universal audio data for training rather than being restricted to speech-specific datasets. |
|
- UniTTS: We present UniTTS, a novel TTS system trained on QWen2.5-7B and DistilCodec. Leveraging DistilCodec's comprehensive audio modeling capabilities, UniTTS achieves end-to-end speech synthesis with full-spectrum audio input/output. The system demonstrates enhanced naturalness in emotional expressiveness compared to conventional TTS systems, particularly in capturing subtle prosodic variations and affective nuances during audio generation. |
|
- Novel Audio Language Model Paradigm: We establish a dual-phase Audio Language Model (ALM) training framework, which comprises (i) Audio Perceptual Modeling (DistilCodec) focusing purely on acoustic discretization, and (ii) Audio Cognitive Modeling (UniTTS) implemented via pretraining (incorporating universal audio autoregressive tasks), supervised fine-tuning (evaluating text-audio interleaved prompts' impact), and alignment (employing direct preference optimization for speech refinement) - enabled by UniTTS's complete end-to-end integration within the LLM. |
|
|
|
## Training data distribution and application scope |
|
The model architecture was augmented with cross-lingual text-speech paired datasets (English and Chinese) alongside text-associated instruction corpora during pretraining. Subsequent SFT and alignment phases systematically incorporated three datasets: text instructions dataset, long-CoT dataset, and Chinese TTS dataset. Consequently, the model demonstrates robust capabilities in text-based conversational, long-CoT conversational, and Chinese TTS. |
|
|
|
The distribution of the pretraining training data is as follows: |
|
| Data Type | Data Size (B) | |
|
|----------------------------|---------------| |
|
| Text Data | 140 | |
|
| Text-Audio Alignment Data | 82 | |
|
| Audio Data | 100 | |
|
| **Total** | **322** | |
|
|
|
The distribution of the sft training data is as follows: |
|
|
|
| Data Type | Number of Samples | |
|
|----------------------------|-------------------| |
|
| Text Data | 181K | |
|
| Long-cot Dataset | 55K | |
|
| Chinese Text-Audio Alignment Data | 401K | |
|
| Total | 637K | |
|
|
|
The distribution of the lpo training data is as follows: |
|
|
|
| Data Type | Number of Samples | |
|
|----------------------------|-------------------| |
|
| General SFT Data | 100K | |
|
| Long-cot Dataset | 45K | |
|
| Chinese Text-Audio Alignment Data | 300K | |
|
| Total | 445K | |
|
|
|
The proposed model supports the following capabilities |
|
|
|
| Application Type | Support Status | |
|
|----------------------------|-------------------| |
|
| Text conversation | Supported | |
|
| Long-cot conversation | Supported | |
|
| Chinese TTS | Supported | |
|
|
|
## Install |
|
**Clone and Install** |
|
|
|
- Clone the repo |
|
``` sh |
|
git clone [email protected]:IDEA-Emdoor-Lab/UniTTS.git |
|
|
|
git clone [email protected]:IDEA-Emdoor-Lab/DistilCodec.git |
|
|
|
cd UniTTS |
|
``` |
|
|
|
- Installation environment |
|
``` sh |
|
conda create -n unitts -y python=3.10 |
|
conda activate unitts |
|
pip install -r requirements.txt |
|
``` |
|
|
|
|
|
|
|
**Model Download** |
|
|
|
Download via git clone: |
|
```sh |
|
mkdir -p pretrained_models |
|
|
|
# Make sure you have git-lfs installed (https://git-lfs.com) |
|
git lfs install |
|
|
|
# clone UniTTS model |
|
git clone [email protected]:IDEA-Emdoor/UniTTS-mixed-v0.1 |
|
``` |
|
|
|
|
|
## Inference Usage |
|
### TTS Inference Usage |
|
|
|
``` |
|
#### Step 1: Init model |
|
|
|
from cli.tokenizer import QWenTokenizer |
|
from cli.tts_tool import enocde_audio, tts_prompt_ref_text |
|
import soundfile as sf |
|
import librosa |
|
from vllm import LLM, SamplingParams |
|
|
|
import sys |
|
sys.path.append('../DistilCodec/') # set DistilCodec code path |
|
from distil_codec import DistilCodec # type: ignore |
|
|
|
#init model |
|
model_name="IDEA-Emdoor/UniTTS-mixed-v0.1" |
|
model_config="IDEA-Emdoor/UniTTS-mixed-v0.1/codec_config.json" |
|
ckpt_config="IDEA-Emdoor/UniTTS-mixed-v0.1" |
|
|
|
ref_audio_path='cli/ref.mp3' |
|
ref_text='求求你,再给我一次机会,我保证不会让你失望……' |
|
infer_text='天啊!这竟然是真的?我简直不敢相信!' |
|
|
|
|
|
llm = LLM(model=model_name, dtype='auto', gpu_memory_utilization=0.8, seed=0) |
|
codec = DistilCodec.from_pretrained( |
|
config_path=model_config, |
|
model_path=ckpt_config, |
|
use_generator=True, |
|
is_debug=False, |
|
local_rank=0).eval() |
|
|
|
tokenizer: QWenTokenizer = QWenTokenizer(model_name) |
|
stop_tokens = ["<|endoftext|>", "<|endofaudio|>", "<|im_end|>"] |
|
stop_ids = tokenizer.tokenizer.convert_tokens_to_ids(stop_tokens) |
|
|
|
#### Step 2: format prompt |
|
|
|
ref_audio_text = enocde_audio(codec, tokenizer, ref_audio_path) |
|
ref_audio_text = f'<|inter_audio_begin|>{ref_audio_text}<|inter_audio_end|>' |
|
prompt = tts_prompt_ref_text.format(content=infer_text, example_voice=ref_audio_text, example_text=ref_text) |
|
|
|
#### Step 3: inference speech token |
|
sampling_params = SamplingParams(temperature=0.9, top_p=0.9, stop_token_ids=stop_ids, max_tokens=6000) |
|
output = llm.generate([prompt], sampling_params) |
|
|
|
#### step 4: decode speech token |
|
|
|
output_dir='./' # save path |
|
tokens = tokenizer.tokenizer.encode(output[0].outputs[0].text)[1: -2] |
|
utt = 'infer' |
|
y_gen = codec.decode_from_codes( |
|
tokens, |
|
minus_token_offset=True # if the 'plus_llm_offset' of method demo_for_generate_audio_codes is set to True, then minus_token_offset must be True. |
|
) |
|
codec.save_wav( |
|
audio_gen_batch=y_gen, |
|
nhop_lengths=[y_gen.shape[-1]], |
|
save_path=output_dir, |
|
name_tag=utt |
|
) |
|
|
|
``` |
|
|
|
### Long-cot Inference Usage |
|
``` |
|
#### Step 1: Init model |
|
|
|
from cli.tokenizer import QWenTokenizer |
|
from cli.tts_tool import enocde_audio, long_cot_prompt_template |
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
#init model |
|
model_name="IDEA-Emdoor/UniTTS-mixed-v0.1" |
|
infer_text="给我写一首春天的作文" |
|
llm = LLM(model=model_name, dtype='auto', gpu_memory_utilization=0.8, seed=0) |
|
|
|
tokenizer: QWenTokenizer = QWenTokenizer(model_name) |
|
stop_tokens = ["<|endoftext|>", "<|endofaudio|>", "<|im_end|>"] |
|
stop_ids = tokenizer.tokenizer.convert_tokens_to_ids(stop_tokens) |
|
|
|
#### Step 2: format prompt |
|
|
|
prompt = long_cot_prompt_template.format(question=infer_text) |
|
|
|
#### Step 3: inference speech token |
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.8, stop_token_ids=stop_ids, max_tokens=6000) |
|
output = llm.generate([prompt], sampling_params) |
|
|
|
print(output[0].outputs[0].text) |
|
|
|
``` |
|
|
|
### Text conversation Inference Usage |
|
|
|
``` |
|
#### Step 1: Init model |
|
|
|
from cli.tokenizer import QWenTokenizer |
|
from cli.tts_tool import enocde_audio, text_conversation_prompt_template |
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
#init model |
|
model_name="IDEA-Emdoor/UniTTS-mixed-v0.1" |
|
|
|
infer_text="天空为什么是蓝色的?" |
|
llm = LLM(model=model_name, dtype='auto', gpu_memory_utilization=0.8, seed=0) |
|
|
|
tokenizer: QWenTokenizer = QWenTokenizer(model_name) |
|
stop_tokens = ["<|endoftext|>", "<|endofaudio|>", "<|im_end|>"] |
|
stop_ids = tokenizer.tokenizer.convert_tokens_to_ids(stop_tokens) |
|
|
|
#### Step 2: format prompt |
|
|
|
prompt = text_conversation_prompt_template.format(question=infer_text) |
|
|
|
#### Step 3: inference speech token |
|
sampling_params = SamplingParams(temperature=0.75, top_p=0.75, stop_token_ids=stop_ids, max_tokens=6000) |
|
output = llm.generate([prompt], sampling_params) |
|
|
|
print(output[0].outputs[0].text) |
|
|
|
``` |
|
|
|
## Citation |
|
``` |
|
@misc{wang2025unittsendtoendttsdecoupling, |
|
title={UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information}, |
|
author={Rui Wang and Qianguo Sun and Tianrong Chen and Zhiyun Zeng and Junlong Wu and Jiaxing Zhang}, |
|
year={2025}, |
|
eprint={2505.17426}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.SD}, |
|
url={https://arxiv.org/abs/2505.17426}, |
|
} |
|
``` |
|
|
|
|
|
## Disclaimer |
|
|
|
Our model provides zero-shot voice cloning only for academic research purposes. We encourage the community to uphold safety and ethical principles in AI research and applications. |
|
|
|
Important Notes: |
|
|
|
- Compliance with the model's open-source license is mandatory. |
|
|
|
- Unauthorized voice replication applications are strictly prohibited. |
|
|
|
- Developers bear no responsibility for any misuse of this model. |
|
|
|
|
|
## License |
|
<a href="https://arxiv.org/abs/2505.17426">UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information</a> © 2025 by <a href="https://creativecommons.org">Rui Wang, Qianguo Sun, Tianrong Chen, Zhiyun Zeng, Junlong Wu, Jiaxing Zhang</a> is licensed under <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/">CC BY-NC-ND 4.0</a><img src="https://mirrors.creativecommons.org/presskit/icons/cc.svg" style="max-width: 1em;max-height:1em;margin-left: .2em;"><img src="https://mirrors.creativecommons.org/presskit/icons/by.svg" style="max-width: 1em;max-height:1em;margin-left: .2em;"><img src="https://mirrors.creativecommons.org/presskit/icons/nc.svg" style="max-width: 1em;max-height:1em;margin-left: .2em;"><img src="https://mirrors.creativecommons.org/presskit/icons/nd.svg" style="max-width: 1em;max-height:1em;margin-left: .2em;"> |