InPeerReview's picture
Upload eval.py
a050a18 verified
import sys
from model.trainer import Trainer
sys.path.insert(0, '.')
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.parallel import gather
import torch.optim.lr_scheduler
import dataset.dataset as myDataLoader
import dataset.Transforms as myTransforms
from model.metric_tool import ConfuseMatrixMeter
from model.utils import BCEDiceLoss, init_seed
from PIL import Image
import os
import time
import numpy as np
from argparse import ArgumentParser
from tqdm import tqdm
@torch.no_grad()
def validate(args, val_loader, model, save_masks=False):
model.eval()
# 确保所有BatchNorm层使用全局统计量
for m in model.modules():
if isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm1d)):
m.track_running_stats = True
m.eval()
salEvalVal = ConfuseMatrixMeter(n_class=2)
epoch_loss = []
if save_masks:
mask_dir = f"{args.savedir}/pred_masks"
os.makedirs(mask_dir, exist_ok=True)
print(f"Saving prediction masks to: {mask_dir}")
pbar = tqdm(enumerate(val_loader), total=len(val_loader), desc="Validating")
for batch_idx, batched_inputs in pbar:
img, target = batched_inputs
# 获取当前batch的所有文件名
batch_file_names = val_loader.sampler.data_source.file_list[
batch_idx * args.batch_size : (batch_idx + 1) * args.batch_size
]
pre_img = img[:, 0:3]
post_img = img[:, 3:6]
if args.onGPU:
pre_img = pre_img.cuda()
post_img = post_img.cuda()
target = target.cuda()
target = target.float()
output = model(pre_img, post_img)
loss = BCEDiceLoss(output, target)
pred = (output > 0.5).long()
if save_masks:
pred_np = pred.cpu().numpy().astype(np.uint8)
print(f"\nDebug - Batch {batch_idx}: {len(batch_file_names)} files, Mask shape: {pred_np.shape}")
try:
for i in range(pred_np.shape[0]):
if i >= len(batch_file_names): # 防止文件名不足
print(f"Warning: Missing filename for mask {i}, using default")
base_name = f"batch_{batch_idx}_mask_{i}"
else:
base_name = os.path.splitext(os.path.basename(batch_file_names[i]))[0]
single_mask = pred_np[i, 0] # 获取(1, 256, 256)中的(256, 256)
if single_mask.ndim != 2:
raise ValueError(f"Invalid mask shape: {single_mask.shape}")
mask_path = f"{mask_dir}/{base_name}_pred.png"
Image.fromarray(single_mask * 255).save(mask_path)
print(f"Saved: {mask_path}")
except Exception as e:
print(f"\nError saving batch {batch_idx}: {str(e)}")
print(f"Current mask shape: {single_mask.shape if 'single_mask' in locals() else 'N/A'}")
print(f"Current file: {base_name if 'base_name' in locals() else 'N/A'}")
if args.onGPU and torch.cuda.device_count() > 1:
pred = gather(pred, 0, dim=0)
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target.cpu().numpy())
epoch_loss.append(loss.item())
pbar.set_postfix({'Loss': f"{loss.item():.4f}", 'F1': f"{f1:.4f}"})
average_loss = sum(epoch_loss) / len(epoch_loss)
scores = salEvalVal.get_scores()
return average_loss, scores
def ValidateSegmentation(args):
"""完整的验证流程主函数"""
# 初始化设置
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
torch.backends.cudnn.benchmark = True
init_seed(args.seed) # 固定随机种子保证可重复性
# 模型路径设置
args.savedir = os.path.join(args.savedir,
f"{args.file_root}_iter_{args.max_steps}_lr_{args.lr}")
os.makedirs(args.savedir, exist_ok=True)
# 数据集路径配置
dataset_mapping = {
'LEVIR': './levir_cd_256',
'WHU': './whu_cd_256',
'CLCD': './clcd_256',
'SYSU': './sysu_256',
'OSCD': './oscd_256'
}
args.file_root = dataset_mapping.get(args.file_root, args.file_root)
# 初始化模型
model = Trainer(args.model_type).float()
if args.onGPU:
model = model.cuda()
# 数据预处理 - 保持与训练时验证集相同的预处理
mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]
valDataset = myTransforms.Compose([
myTransforms.Normalize(mean=mean, std=std),
myTransforms.Scale(args.inWidth, args.inHeight),
myTransforms.ToTensor()
])
# 数据加载
test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
testLoader = torch.utils.data.DataLoader(
test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True
)
# 日志设置
logFileLoc = os.path.join(args.savedir, args.logFile)
logger = open(logFileLoc, 'a' if os.path.exists(logFileLoc) else 'w')
if not os.path.exists(logFileLoc):
logger.write("\n%s\t%s\t%s\t%s\t%s\t%s\t%s" %
('Epoch', 'Kappa', 'IoU', 'F1', 'Recall', 'Precision', 'OA'))
logger.flush()
# 加载最佳模型
model_file_name = os.path.join(args.savedir, 'best_model.pth')
if not os.path.exists(model_file_name):
raise FileNotFoundError(f"Model file not found: {model_file_name}")
state_dict = torch.load(model_file_name)
model.load_state_dict(state_dict)
print(f"Loaded model from {model_file_name}")
# 执行验证
loss_test, score_test = validate(args, testLoader, model, save_masks=args.save_masks)
# 输出结果
print("\nTest Results:")
print(f"Loss: {loss_test:.4f}")
print(f"Kappa: {score_test['Kappa']:.4f}")
print(f"IoU: {score_test['IoU']:.4f}")
print(f"F1: {score_test['F1']:.4f}")
print(f"Recall: {score_test['recall']:.4f}")
print(f"Precision: {score_test['precision']:.4f}")
print(f"OA: {score_test['OA']:.4f}")
# 记录日志
logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" %
('Test', score_test['Kappa'], score_test['IoU'], score_test['F1'],
score_test['recall'], score_test['precision'], score_test['OA']))
logger.close()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--file_root', default="LEVIR",
help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD')
parser.add_argument('--inWidth', type=int, default=256, help='Width of input image')
parser.add_argument('--inHeight', type=int, default=256, help='Height of input image')
parser.add_argument('--max_steps', type=int, default=80000,
help='Max. number of iterations (for path naming)')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of data loading workers')
parser.add_argument('--model_type', type=str, default='small',
help='Model type | tiny | small')
parser.add_argument('--batch_size', type=int, default=16,
help='Batch size for validation')
parser.add_argument('--lr', type=float, default=2e-4,
help='Learning rate (for path naming)')
parser.add_argument('--seed', type=int, default=16,
help='Random seed for reproducibility')
parser.add_argument('--savedir', default='./results',
help='Base directory to save results')
parser.add_argument('--logFile', default='testLog.txt',
help='File to save validation logs')
parser.add_argument('--onGPU', default=True,
type=lambda x: (str(x).lower() == 'true'),
help='Run on GPU if True')
parser.add_argument('--gpu_id', type=int, default=0,
help='GPU device id')
parser.add_argument('--save_masks', action='store_true',
help='Save predicted masks to disk')
args = parser.parse_args()
print('Validation with args:')
print(args)
ValidateSegmentation(args)