File size: 19,279 Bytes
9a420d1
 
 
 
 
8ac16f8
9a420d1
8ac16f8
9a420d1
 
 
 
 
 
 
 
 
f521761
9a420d1
6c0338b
 
 
 
 
 
 
 
 
9a420d1
 
6c0338b
 
 
 
 
 
9a420d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0338b
9a420d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0338b
9a420d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e95c7f
 
6c0338b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e95c7f
 
6c0338b
8ac16f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0338b
9a420d1
 
 
f521761
 
 
 
 
 
 
 
 
 
 
 
9a420d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac16f8
6c0338b
8ac16f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
- gui
- agent
- gui-grounding
- reinforcement-learning
---

# InfiGUI-G1-7B

This repository contains the InfiGUI-G1-7B model from the paper **[InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization](https://arxiv.org/abs/2508.05731)**.

<p align="left">
  <a href="https://arxiv.org/abs/2508.05731"><img src="https://img.shields.io/badge/arXiv-Preprint-b31b1b?style=flat&logo=arxiv&logoColor=white" alt="arXiv Paper"></a>
  <a href="https://huggingface.co/papers/2508.05731"><img src="https://img.shields.io/badge/HuggingFace-Daily%20Papers-ff9800?style=flat&logo=huggingface" alt="Hugging Face Paper"></a>
  <a href="https://huggingface.co/InfiX-ai/InfiGUI-G1-3B"><img src="https://img.shields.io/badge/Model-InfiGUI--G1--3B-007ec6?style=flat&logo=huggingface" alt="InfiGUI-G1 3B Model"></a>
  <a href="https://github.com/InfiXAI/InfiGUI-G1"><img src="https://img.shields.io/badge/GitHub-Repo-181717?style=flat&logo=github&logoColor=white" alt="GitHub Repo"></a>
</p>

## Model Description

The model is based on `Qwen2.5-VL-7B-Instruct` and is fine-tuned using our proposed **Adaptive Exploration Policy Optimization (AEPO)** framework. AEPO is a novel reinforcement learning method designed to enhance the model's **semantic alignment** for GUI grounding tasks. It overcomes the exploration bottlenecks of standard RLVR methods by integrating a multi-answer generation strategy with a theoretically-grounded adaptive reward function, enabling more effective and efficient learning for complex GUI interactions.

## Paper Overview

A fundamental challenge for GUI agents is robustly grounding natural language instructions, which requires not only precise **spatial alignment** (locating elements accurately) but also correct **semantic alignment** (identifying the functionally appropriate element). While existing Reinforcement Learning with Verifiable Rewards (RLVR) methods have enhanced spatial precision, they often suffer from inefficient exploration. This "confidence trap" bottlenecks semantic alignment, preventing models from discovering correct actions for difficult semantic associations.

To address this critical exploration problem, we introduce **InfiGUI-G1**, a series of models trained with **Adaptive Exploration Policy Optimization (AEPO)**. AEPO overcomes the exploration bottleneck by integrating a **multi-answer generation** strategy to explore a diverse set of candidate actions in a single forward pass. This exploration is guided by a theoretically-grounded **Adaptive Exploration Reward (AER)** function, derived from first principles of efficiency (η=U/C), which provides rich, informative learning signals to dynamically balance exploration and exploitation.

## Quick Start

### Installation
First, install the required dependencies:
```bash
pip install transformers qwen-vl-utils
````

### Example

```python
import json
import math
import torch
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info, smart_resize

MAX_IMAGE_PIXELS = 5600 * 28 * 28


def resize_image(width: int, height: int, max_pixels: int) -> tuple[int, int]:
    """
    Resize image to fit within max_pixels constraint while maintaining aspect ratio.
    Applies smart_resize for final dimension optimization.
    """
    current_pixels = width * height
    
    if current_pixels <= max_pixels:
        target_width, target_height = width, height
    else:
        scale_factor = math.sqrt(max_pixels / current_pixels)
        target_width = round(width * scale_factor)
        target_height = round(height * scale_factor)
    
    # Apply smart_resize for final dimensions
    final_height, final_width = smart_resize(target_height, target_width)
    
    return final_width, final_height


def load_image(img_path: str) -> Image.Image:
    """Load image from URL or local path."""
    if img_path.startswith("https://"):
        response = requests.get(img_path)
        return Image.open(BytesIO(response.content))
    else:
        return Image.open(img_path)


def visualize_points(original_image: Image.Image, points: list, 
                    new_width: int, new_height: int,
                    original_width: int, original_height: int) -> None:
    """Draw prediction points on original image and save as output.png."""
    output_img = original_image.copy()
    draw = ImageDraw.Draw(output_img)
    font = ImageFont.load_default(size=100)
    
    for i, point_data in enumerate(points):
        coords = point_data['point_2d']
        
        # Map coordinates from resized image back to original image
        original_x = int(coords[0] / new_width * original_width)
        original_y = int(coords[1] / new_height * original_height)
        
        label = str(i + 1)
        
        # Draw circle
        circle_radius = 20
        draw.ellipse([original_x - circle_radius, original_y - circle_radius,
                     original_x + circle_radius, original_y + circle_radius],
                    fill=(255, 0, 0))
        
        # Draw label
        draw.text((original_x + 20, original_y - 20), label, fill=(255, 0, 0), font=font)
        
        print(f"Point {i+1}: Predicted coordinates {coords} -> Mapped coordinates [{original_x}, {original_y}]")
    
    output_img.save("output.png")
    print(f"Visualization with {len(points)} points saved to output.png")


def main():
    # Load model and processor
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        "InfiX-ai/InfiGUI-G1-7B", 
        torch_dtype=torch.bfloat16, 
        attn_implementation="flash_attention_2", 
        device_map="auto"
    )
    processor = AutoProcessor.from_pretrained("InfiX-ai/InfiGUI-G1-7B", padding_side="left")

    # Load and process image
    img_path = "https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/test_image.png"
    image = load_image(img_path)
    
    # Store original image and resize for model input
    original_image = image.copy()
    original_width, original_height = image.size
    new_width, new_height = resize_image(original_width, original_height, MAX_IMAGE_PIXELS)
    resized_image = image.resize((new_width, new_height))

    # Prepare model inputs
    instruction = "shuffle play the current playlist"
    system_prompt = 'You FIRST think about the reasoning process as an internal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed within <think> </think> tags.'
    prompt = f'''The screen's resolution is {new_width}x{new_height}.
Locate the UI element(s) for "{instruction}", output the coordinates using JSON format: [{{"point_2d": [x, y]}}, ...]'''

    messages = [
        {"role": "system", "content": system_prompt},
        {
            "role": "user",
            "content": [
                {"type": "image", "image": resized_image},
                {"type": "text", "text": prompt}
            ]
        }
    ]

    # Generate predictions
    text = processor.apply_chat_template([messages], tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info([messages])
    inputs = processor(text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to("cuda")
    generated_ids = model.generate(**inputs, max_new_tokens=512)
    output_text = processor.batch_decode(
        [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)],
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )

    # Parse and visualize results
    output_text = output_text[0].split("</think>")[-1].replace("```json", "").replace("```", "").strip()
    output = json.loads(output_text)
    
    if output:
        visualize_points(original_image, output, new_width, new_height, original_width, original_height)

if __name__ == "__main__":
    main()
```

## Results

Our InfiGUI-G1 models, trained with the AEPO framework, establish new state-of-the-art results among open-source models across a diverse and challenging set of GUI grounding benchmarks:

<div align="left">
  <table style="width: 100%; max-width: 750px; border-collapse: collapse; border-top: 2px solid #212529; border-bottom: 2px solid #212529; font-family: sans-serif;">
      <thead style="background-color: #f8f9fa;">
          <tr style="border-bottom: 1.5px solid #212529;">
              <th style="padding: 12px 10px; text-align: left; width: 24.9%; font-weight: 600; color: #343a40;">Model</th>
              <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">MMBench-GUI</th>
              <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-v2</th>
              <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">UI-Vision</th>
              <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">I2E-Bench</th>
              <th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-Pro</th>
          </tr>
      </thead>
      <tbody>
          <tr>
              <td style="padding: 10px; text-align: left;">Qwen2.5-VL-7B</td>
              <td style="padding: 10px; text-align: center;">33.9</td>
              <td style="padding: 10px; text-align: center;">88.8</td>
              <td style="padding: 10px; text-align: center;">0.9</td>
              <td style="padding: 10px; text-align: center;">53.8</td>
              <td style="padding: 10px; text-align: center;">-</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">GUI-G²-7B</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;"><u>93.3</u></td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">47.5</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">UI-TARS-7B</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">91.6</td>
              <td style="padding: 10px; text-align: center;">17.6</td>
              <td style="padding: 10px; text-align: center;">61.4</td>
              <td style="padding: 10px; text-align: center;">35.7</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">UGround-v1-7B</td>
              <td style="padding: 10px; text-align: center;">65.7</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">12.9</td>
              <td style="padding: 10px; text-align: center;">70.3</td>
              <td style="padding: 10px; text-align: center;">-</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">UI-TARS-1.5-7B</td>
              <td style="padding: 10px; text-align: center;">64.3</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">73.2</td>
              <td style="padding: 10px; text-align: center;"><u>49.6</u></td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">Qwen2.5-VL-72B</td>
              <td style="padding: 10px; text-align: center;">41.8</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">51.4</td>
              <td style="padding: 10px; text-align: center;">-</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">UGround-v1-72B</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">-</td>
              <td style="padding: 10px; text-align: center;">23.2</td>
              <td style="padding: 10px; text-align: center;"><u>76.3</u></td>
              <td style="padding: 10px; text-align: center;">-</td>
          </tr>
          <tr>
              <td style="padding: 10px; text-align: left;">UI-TARS-72B</td>
              <td style="padding: 10px; text-align: center;"><u>74.3</u></td>
              <td style="padding: 10px; text-align: center;">90.3</td>
              <td style="padding: 10px; text-align: center;"><u>25.5</u></td>
              <td style="padding: 10px; text-align: center;">73.7</td>
              <td style="padding: 10px; text-align: center;">-</td>
          </tr>
          <tr>
              <th colspan="6" style="padding: 10px 12px; text-align: left; font-style: italic; background-color: #f8f9fa; border-top: 1px solid #dee2e6; border-bottom: 1px solid #dee2e6; color: #343a40;">Ours</th>
          </tr>
          <tr style="background-color: #f0f8ff;">
              <td style="padding: 10px; text-align: left;"><b>InfiGUI-G1-7B</b></td>
              <td style="padding: 10px; text-align: center;"><b>80.8</b></td>
              <td style="padding: 10px; text-align: center;"><b>93.5</b></td>
              <td style="padding: 10px; text-align: center;"><b>26.1</b></td>
              <td style="padding: 10px; text-align: center;"><b>77.4</b></td>
              <td style="padding: 10px; text-align: center;"><b>51.9</b></td>
          </tr>
          <tr style="background-color: #f0f8ff;">
              <td style="padding: 10px; text-align: right;"><i>w/ Expl. Success</i></td>
              <td style="padding: 10px; text-align: center;">86.4</td>
              <td style="padding: 10px; text-align: center;">95.6</td>
              <td style="padding: 10px; text-align: center;">34.4</td>
              <td style="padding: 10px; text-align: center;">83.0</td>
              <td style="padding: 10px; text-align: center;">58.0</td>
          </tr>
      </tbody>
  </table>
</div>

## Evaluation

This section provides instructions for reproducing the evaluation results reported in our paper.

### 1. Getting Started

Clone the repository and navigate to the project directory:

```bash
git clone https://github.com/InfiXAI/InfiGUI-G1.git
cd InfiGUI-G1
```

### 2. Environment Setup

The evaluation pipeline is built upon the [vLLM](https://github.com/vllm-project/vllm) library for efficient inference. For detailed installation guidance, please refer to the official vLLM repository. The specific versions used to obtain the results reported in our paper are as follows:

- **Python**: `3.10.12`
- **PyTorch**: `2.6.0`
- **Transformers**: `4.50.1`
- **vLLM**: `0.8.2`
- **CUDA**: `12.6`

The reported results were obtained on a server equipped with 4 x NVIDIA H800 GPUs.

### 3. Model Download

Download the InfiGUI-G1 models from the Hugging Face Hub into the `./models` directory.

```bash
# Create a directory for models
mkdir -p ./models

# Download InfiGUI-G1-3B
huggingface-cli download --resume-download InfiX-ai/InfiGUI-G1-3B --local-dir ./models/InfiGUI-G1-3B

# Download InfiGUI-G1-7B
huggingface-cli download --resume-download InfiX-ai/InfiGUI-G1-7B --local-dir ./models/InfiGUI-G1-7B
```

### 4. Dataset Download and Preparation

Download the required evaluation benchmarks into the `./data` directory.

```bash
# Create a directory for datasets
mkdir -p ./data

# Download benchmarks
huggingface-cli download --repo-type dataset --resume-download likaixin/ScreenSpot-Pro --local-dir ./data/ScreenSpot-Pro
huggingface-cli download --repo-type dataset --resume-download ServiceNow/ui-vision --local-dir ./data/ui-vision
huggingface-cli download --repo-type dataset --resume-download OS-Copilot/ScreenSpot-v2 --local-dir ./data/ScreenSpot-v2
huggingface-cli download --repo-type dataset --resume-download OpenGVLab/MMBench-GUI --local-dir ./data/MMBench-GUI
huggingface-cli download --repo-type dataset --resume-download vaundys/I2E-Bench --local-dir ./data/I2E-Bench
```

After downloading, some datasets require unzipping compressed image files.

```bash
# Unzip images for ScreenSpot-v2
unzip ./data/ScreenSpot-v2/screenspotv2_image.zip -d ./data/ScreenSpot-v2/

# Unzip images for MMBench-GUI
unzip ./data/MMBench-GUI/MMBench-GUI-OfflineImages.zip -d ./data/MMBench-GUI/
```

### 5. Running the Evaluation

To run the evaluation, use the `eval/eval.py` script. You must specify the path to the model, the benchmark name, and the tensor parallel size.

Here is an example command to evaluate the `InfiGUI-G1-3B` model on the `screenspot-pro` benchmark using 4 GPUs:

```bash
python eval/eval.py \
    ./models/InfiGUI-G1-3B \
    --benchmark screenspot-pro \
    --tensor-parallel 4
```

- **`model_path`**: The first positional argument specifies the path to the downloaded model directory (e.g., `./models/InfiGUI-G1-3B`).
- **`--benchmark`**: Specifies the benchmark to evaluate. Available options include `screenspot-pro`, `screenspot-v2`, `ui-vision`, `mmbench-gui`, and `i2e-bench`.
- **`--tensor-parallel`**: Sets the tensor parallelism size, which should typically match the number of available GPUs.

Evaluation results, including detailed logs and performance metrics, will be saved to the `./output/{model_name}/{benchmark}/` directory.

## Citation Information

If you find this work useful, we would be grateful if you consider citing the following papers:

```bibtex
@misc{liu2025infiguig1advancingguigrounding,
      title={InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization}, 
      author={Yuhang Liu and Zeyu Liu and Shuanghe Zhu and Pengxiang Li and Congkai Xie and Jiasheng Wang and Xueyu Hu and Xiaotian Han and Jianbo Yuan and Xinyao Wang and Shengyu Zhang and Hongxia Yang and Fei Wu},
      year={2025},
      eprint={2508.05731},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2508.05731}, 
}
```

```bibtex
@article{liu2025infigui,
  title={InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners},
  author={Liu, Yuhang and Li, Pengxiang and Xie, Congkai and Hu, Xavier and Han, Xiaotian and Zhang, Shengyu and Yang, Hongxia and Wu, Fei},
  journal={arXiv preprint arXiv:2504.14239},
  year={2025}
}
```

```bibtex
@article{liu2025infiguiagent,
  title={InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection},
  author={Liu, Yuhang and Li, Pengxiang and Wei, Zishu and Xie, Congkai and Hu, Xueyu and Xu, Xinchen and Zhang, Shengyu and Han, Xiaotian and Yang, Hongxia and Wu, Fei},
  journal={arXiv preprint arXiv:2501.04575},
  year={2025}
}
```

## Acknowledgements

We would like to express our gratitude for the following open-source projects: [VERL](https://github.com/volcengine/verl), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) and [vLLM](https://github.com/vllm-project/vllm).