ModernBERT NER (CoNLL2003)

This model is a fine-tuned version of answerdotai/ModernBERT-base on the conll2003 dataset for Named Entity Recognition (NER).

Robust performance on tasks involving the recognition of Persons, Organizations, and Locations.

It achieves the following results on the evaluation set:

  • Loss: 0.0992
  • Precision: 0.8349
  • Recall: 0.8563
  • F1: 0.8455
  • Accuracy: 0.9752

Model Details

Training Data

The model is fine-tuned on the CoNLL2003 dataset, a well-known benchmark for NER. This dataset provides a solid foundation for the model to generalize on general English text.

Example Usage

Below is an example of how to use the model with the Hugging Face Transformers library:

from transformers import pipeline

ner = pipeline(task="token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="max")

results = ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")

for entity in results:
    for key, value in entity.items():
        if key == "entity_group":
            print(f"{entity['word']} => {entity[key]}")

Results:

Ismael Mousa => PER
Palestine => LOC
NVIDIA => ORG

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2306 1.0 1756 0.2243 0.6074 0.6483 0.6272 0.9406
0.1415 2.0 3512 0.1583 0.7258 0.7536 0.7394 0.9583
0.1143 3.0 5268 0.1335 0.7731 0.7989 0.7858 0.9657
0.0913 4.0 7024 0.1145 0.7958 0.8256 0.8104 0.9699
0.0848 5.0 8780 0.1079 0.8120 0.8408 0.8261 0.9720
0.0728 6.0 10536 0.1036 0.8214 0.8452 0.8331 0.9730
0.0623 7.0 12292 0.1032 0.8258 0.8487 0.8371 0.9737
0.0599 8.0 14048 0.0990 0.8289 0.8527 0.8406 0.9745
0.0558 9.0 15804 0.0998 0.8331 0.8541 0.8434 0.9750
0.0559 10.0 17560 0.0992 0.8349 0.8563 0.8455 0.9752

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
203
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for IsmaelMousa/modernbert-ner-conll2003

Finetuned
(360)
this model

Dataset used to train IsmaelMousa/modernbert-ner-conll2003

Evaluation results