ModernBERT NER (CoNLL2003)
This model is a fine-tuned version of answerdotai/ModernBERT-base on the conll2003 dataset for Named Entity Recognition (NER).
Robust performance on tasks involving the recognition of Persons
, Organizations
, and Locations
.
It achieves the following results on the evaluation set:
- Loss: 0.0992
- Precision: 0.8349
- Recall: 0.8563
- F1: 0.8455
- Accuracy: 0.9752
Model Details
- Base Model: ModernBERT: https://doi.org/10.48550/arXiv.2412.13663.
- Fine-tuning Dataset: CoNLL2003: https://huggingface.co/datasets/eriktks/conll2003.
- Task: Named Entity Recognition (NER)
Training Data
The model is fine-tuned on the CoNLL2003 dataset, a well-known benchmark for NER. This dataset provides a solid foundation for the model to generalize on general English text.
Example Usage
Below is an example of how to use the model with the Hugging Face Transformers library:
from transformers import pipeline
ner = pipeline(task="token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="max")
results = ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")
for entity in results:
for key, value in entity.items():
if key == "entity_group":
print(f"{entity['word']} => {entity[key]}")
Results:
Ismael Mousa => PER
Palestine => LOC
NVIDIA => ORG
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2306 | 1.0 | 1756 | 0.2243 | 0.6074 | 0.6483 | 0.6272 | 0.9406 |
0.1415 | 2.0 | 3512 | 0.1583 | 0.7258 | 0.7536 | 0.7394 | 0.9583 |
0.1143 | 3.0 | 5268 | 0.1335 | 0.7731 | 0.7989 | 0.7858 | 0.9657 |
0.0913 | 4.0 | 7024 | 0.1145 | 0.7958 | 0.8256 | 0.8104 | 0.9699 |
0.0848 | 5.0 | 8780 | 0.1079 | 0.8120 | 0.8408 | 0.8261 | 0.9720 |
0.0728 | 6.0 | 10536 | 0.1036 | 0.8214 | 0.8452 | 0.8331 | 0.9730 |
0.0623 | 7.0 | 12292 | 0.1032 | 0.8258 | 0.8487 | 0.8371 | 0.9737 |
0.0599 | 8.0 | 14048 | 0.0990 | 0.8289 | 0.8527 | 0.8406 | 0.9745 |
0.0558 | 9.0 | 15804 | 0.0998 | 0.8331 | 0.8541 | 0.8434 | 0.9750 |
0.0559 | 10.0 | 17560 | 0.0992 | 0.8349 | 0.8563 | 0.8455 | 0.9752 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 203
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for IsmaelMousa/modernbert-ner-conll2003
Base model
answerdotai/ModernBERT-baseDataset used to train IsmaelMousa/modernbert-ner-conll2003
Evaluation results
- Precision on conll2003validation set self-reported0.835
- Recall on conll2003validation set self-reported0.856
- F1 on conll2003validation set self-reported0.845
- Accuracy on conll2003validation set self-reported0.975