YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model used hfl/chinese-roberta-wwm-ext-large backbone and was trained on SNLI, MNLI, DNLI, KvPI, OCNLI, CMNLI data in Chinese version. Model structures are as follows:

class RobertaForSequenceClassification(nn.Module):
    def __init__(self, tagset_size):
        super(RobertaForSequenceClassification, self).__init__()
        self.tagset_size = tagset_size

        self.roberta_single= AutoModel.from_pretrained(pretrain_model_dir)
        self.single_hidden2tag = RobertaClassificationHead(bert_hidden_dim, tagset_size)

    def forward(self, input_ids, input_mask):
        outputs_single = self.roberta_single(input_ids, input_mask, None)
        hidden_states_single = outputs_single[1]#torch.tanh(self.hidden_layer_2(torch.tanh(self.hidden_layer_1(outputs_single[1])))) #(batch, hidden)

        score_single = self.single_hidden2tag(hidden_states_single) #(batch, tag_set)
        return score_single



class RobertaClassificationHead(nn.Module):
    def __init__(self, bert_hidden_dim, num_labels):
        super(RobertaClassificationHead, self).__init__()
        self.dense = nn.Linear(bert_hidden_dim, bert_hidden_dim)
        self.dropout = nn.Dropout(0.1)
        self.out_proj = nn.Linear(bert_hidden_dim, num_labels)

    def forward(self, features):
        x = features#[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x
model = RobertaForSequenceClassification(num_labels)
model.load_state_dict(torch.load(args.model_save_path+'Roberta_large_model.pt', map_location=device))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.