Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model used to classify gender in labour advertisements from the eigtheenth and nineteenth centuries. It was trained by Sofus Landor Dam and Johan Heinsen.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 1 |
|
| 0 |
|
| Label | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|
| all | 0.9924 | 0.9944 | 0.9944 | 0.9944 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("JohanHeinsen/Labour_ads_gender")
# Run inference
preds = model("En Stuepige, som forstaaer hvad hun bør, søger til Paaske; er at finde i Dronningens Tvergade Nr. 363 i Stuen.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 8 | 32.4388 | 176 |
| Label | Training Sample Count |
|---|---|
| 0 | 194 |
| 1 | 419 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.2907 | - |
| 0.0543 | 50 | 0.2618 | - |
| 0.1087 | 100 | 0.0493 | - |
| 0.1630 | 150 | 0.0181 | - |
| 0.2174 | 200 | 0.0038 | - |
| 0.2717 | 250 | 0.001 | - |
| 0.3261 | 300 | 0.0005 | - |
| 0.3804 | 350 | 0.0003 | - |
| 0.4348 | 400 | 0.0002 | - |
| 0.4891 | 450 | 0.0001 | - |
| 0.5435 | 500 | 0.0001 | - |
| 0.5978 | 550 | 0.0001 | - |
| 0.6522 | 600 | 0.0001 | - |
| 0.7065 | 650 | 0.0001 | - |
| 0.7609 | 700 | 0.0001 | - |
| 0.8152 | 750 | 0.0001 | - |
| 0.8696 | 800 | 0.0001 | - |
| 0.9239 | 850 | 0.0 | - |
| 0.9783 | 900 | 0.0 | - |
| 1.0326 | 950 | 0.0 | - |
| 1.0870 | 1000 | 0.0 | - |
| 1.1413 | 1050 | 0.0 | - |
| 1.1957 | 1100 | 0.0 | - |
| 1.25 | 1150 | 0.0 | - |
| 1.3043 | 1200 | 0.0 | - |
| 1.3587 | 1250 | 0.0 | - |
| 1.4130 | 1300 | 0.0 | - |
| 1.4674 | 1350 | 0.0 | - |
| 1.5217 | 1400 | 0.0 | - |
| 1.5761 | 1450 | 0.0 | - |
| 1.6304 | 1500 | 0.0 | - |
| 1.6848 | 1550 | 0.0 | - |
| 1.7391 | 1600 | 0.0 | - |
| 1.7935 | 1650 | 0.0 | - |
| 1.8478 | 1700 | 0.0 | - |
| 1.9022 | 1750 | 0.0 | - |
| 1.9565 | 1800 | 0.0 | - |
| 2.0109 | 1850 | 0.0 | - |
| 2.0652 | 1900 | 0.0 | - |
| 2.1196 | 1950 | 0.0 | - |
| 2.1739 | 2000 | 0.0 | - |
| 2.2283 | 2050 | 0.0 | - |
| 2.2826 | 2100 | 0.0 | - |
| 2.3370 | 2150 | 0.0 | - |
| 2.3913 | 2200 | 0.0 | - |
| 2.4457 | 2250 | 0.0 | - |
| 2.5 | 2300 | 0.0 | - |
| 2.5543 | 2350 | 0.0 | - |
| 2.6087 | 2400 | 0.0 | - |
| 2.6630 | 2450 | 0.0 | - |
| 2.7174 | 2500 | 0.0 | - |
| 2.7717 | 2550 | 0.0 | - |
| 2.8261 | 2600 | 0.0 | - |
| 2.8804 | 2650 | 0.0 | - |
| 2.9348 | 2700 | 0.0 | - |
| 2.9891 | 2750 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
CALDISS-AAU/DA-BERT_Old_News_V1Totally Free + Zero Barriers + No Login Required