Diffusion model to generate Lung Ultrasound Images(720x720).
This model is a diffusion model for unconditional image generation of Lung Ultrasound 🫁 .
Usage
<!-- After Hugging Face Login install these libraries -->
<!-- !pip install torchsr
!pip install diffusers[training] -->
from torchsr.models import edsr
from diffusers import DDPMPipeline
import torch
from PIL import Image
import torchvision.transforms as transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the butterfly pipeline
butterfly_pipeline = DDPMPipeline.from_pretrained(
"Ketansomewhere/Lung_Ultrasound_Diffusion_720p"
).to(device)
# Create 1(can be n in principle) images
images = butterfly_pipeline(batch_size=1).images
# Load the pre-trained EDSR model
model = edsr(scale=4, pretrained=True).to(device)
upscaled_images = []
for img in images:
# Convert to tensor and add batch dimension
img_tensor = transforms.ToTensor()(img).unsqueeze(0).to(device)
# Upscale the image
upscaled_img_tensor = model(img_tensor)
# Remove batch dimension and convert back to PIL image
upscaled_img = transforms.ToPILImage()(upscaled_img_tensor.squeeze(0).cpu())
# Add to list of upscaled images
upscaled_images.append(upscaled_img)
# Function to make a grid of images
def make_grid(images, size=720):
"""Given a list of PIL images, stack them together into a line for easy viewing"""
output_im = Image.new("RGB", (size * len(images), size))
for i, im in enumerate(images):
output_im.paste(im.resize((size, size)), (i * size, 0))
return output_im
# View the result
make_grid(upscaled_images)
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support unconditional-image-generation models for diffusers library.