CS221-deberta-v3-base-finetuned
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4290
- F1: 0.7570
- Roc Auc: 0.8132
- Accuracy: 0.4928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.619 | 1.0 | 70 | 0.5856 | 0.1435 | 0.5 | 0.1300 |
0.4791 | 2.0 | 140 | 0.4832 | 0.4606 | 0.6568 | 0.3032 |
0.3998 | 3.0 | 210 | 0.4040 | 0.5811 | 0.7136 | 0.3646 |
0.3131 | 4.0 | 280 | 0.3803 | 0.6661 | 0.7461 | 0.4242 |
0.2597 | 5.0 | 350 | 0.3693 | 0.6935 | 0.7671 | 0.4350 |
0.2055 | 6.0 | 420 | 0.3608 | 0.7360 | 0.7979 | 0.4693 |
0.1445 | 7.0 | 490 | 0.3837 | 0.7354 | 0.8020 | 0.4747 |
0.1356 | 8.0 | 560 | 0.3922 | 0.7388 | 0.8087 | 0.4801 |
0.095 | 9.0 | 630 | 0.4000 | 0.7380 | 0.8023 | 0.4964 |
0.0829 | 10.0 | 700 | 0.4149 | 0.7385 | 0.8010 | 0.4856 |
0.0585 | 11.0 | 770 | 0.4290 | 0.7570 | 0.8132 | 0.4928 |
0.0473 | 12.0 | 840 | 0.4585 | 0.7317 | 0.7944 | 0.5 |
0.0379 | 13.0 | 910 | 0.4754 | 0.7353 | 0.7959 | 0.4856 |
0.0277 | 14.0 | 980 | 0.4812 | 0.7428 | 0.8004 | 0.4982 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kuongan/CS221-deberta-v3-base-finetuned
Base model
microsoft/deberta-v3-base