CS221-deberta-v3-base-finetuned

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4290
  • F1: 0.7570
  • Roc Auc: 0.8132
  • Accuracy: 0.4928

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.619 1.0 70 0.5856 0.1435 0.5 0.1300
0.4791 2.0 140 0.4832 0.4606 0.6568 0.3032
0.3998 3.0 210 0.4040 0.5811 0.7136 0.3646
0.3131 4.0 280 0.3803 0.6661 0.7461 0.4242
0.2597 5.0 350 0.3693 0.6935 0.7671 0.4350
0.2055 6.0 420 0.3608 0.7360 0.7979 0.4693
0.1445 7.0 490 0.3837 0.7354 0.8020 0.4747
0.1356 8.0 560 0.3922 0.7388 0.8087 0.4801
0.095 9.0 630 0.4000 0.7380 0.8023 0.4964
0.0829 10.0 700 0.4149 0.7385 0.8010 0.4856
0.0585 11.0 770 0.4290 0.7570 0.8132 0.4928
0.0473 12.0 840 0.4585 0.7317 0.7944 0.5
0.0379 13.0 910 0.4754 0.7353 0.7959 0.4856
0.0277 14.0 980 0.4812 0.7428 0.8004 0.4982

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kuongan/CS221-deberta-v3-base-finetuned

Finetuned
(313)
this model