|
--- |
|
license: mit |
|
language: |
|
- en |
|
- zh |
|
base_model: |
|
- Qwen/Qwen2.5-7B |
|
--- |
|
|
|
# 对数据任务类型分类,比如"情感分析"、"文本分类"、"翻译","总结"、"数学问答".... |
|
|
|
|
|
|
|
import os |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
import json |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from tqdm import tqdm |
|
from loguru import logger |
|
|
|
model_name = "Laurie/Qwen2.5-7b-data-classification" |
|
|
|
# 加载模型和 tokenizer,同时调整 padding_side 为 left(适用于 decoder-only 模型) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
# attn_implementation="flash_attention_2" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # batch 推理时要左填充 |
|
|
|
# 对话模板 |
|
system_message = [{"role": "system", "content": "你是一个数据分类专家,请根据对话内容判断其所属的类别。"}] |
|
last_query = [{"role": "user", "content": "现在请输出你的判断结果:"}] |
|
|
|
def prepare_text(messages: list[dict]) -> str: |
|
""" |
|
将 messages 中的 "from"/"value" 键转为 "role"/"content",并构造完整对话文本 |
|
""" |
|
messages = [{"role": item["from"], "content": item["value"]} for item in messages] |
|
messages = system_message + messages + last_query |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
return text |
|
|
|
def generate_task_types_batch(messages_batch: list[list[dict]]) -> list[str]: |
|
""" |
|
对一个 batch 的对话列表进行推理生成,并返回每个对话中 assistant 的回答部分 |
|
""" |
|
# 将每个消息列表转换为完整文本 |
|
texts = [prepare_text(messages) for messages in messages_batch] |
|
|
|
# 使用批量编码,并进行 padding 以适应批量输入 |
|
model_inputs = tokenizer( |
|
texts, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True |
|
).to(model.device) |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32, |
|
eos_token_id=[151643, 151645], |
|
pad_token_id=151643, |
|
do_sample=True, |
|
repetition_penalty=1.05, |
|
temperature=0.7, |
|
top_p=0.8, |
|
top_k=20 |
|
) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
task_types = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
return task_types |
|
|
|
def process_json(json_path: str, save_path: str, batch_size: int = 8): |
|
""" |
|
读取 JSON 文件,对数据进行批量推理处理, |
|
并将结果写回保存。 |
|
""" |
|
with open(json_path, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
# 分批处理,batch_size 可根据 GPU 显存情况进行调整 |
|
for i in tqdm(range(0, len(data_slice), batch_size)): |
|
batch = data_slice[i : i + batch_size] |
|
conversations_batch = [item["conversations"] for item in batch] |
|
task_types = generate_task_types_batch(conversations_batch) |
|
for item, answer in zip(batch, task_types): |
|
item["task_type"] = answer |
|
|
|
with open(save_path, "w", encoding="utf-8") as f: |
|
json.dump(data_slice, f, ensure_ascii=False, indent=4) |
|
logger.info(f"已处理 {len(data_slice)} 条数据,保存到 {save_path}") |
|
if __name__ == "__main__": |
|
json_path = "./qwen_bench_300k.json" |
|
save_path = "./qwen_bench_300k_cls.json" |
|
process_json(json_path, save_path, batch_size=16) |