|
---
|
|
license: mit
|
|
language:
|
|
- zho
|
|
- eng
|
|
- fra
|
|
- spa
|
|
- por
|
|
- deu
|
|
- ita
|
|
- rus
|
|
- jpn
|
|
- kor
|
|
- vie
|
|
- tha
|
|
- ara
|
|
base_model:
|
|
- Qwen/Qwen2.5-7B
|
|
---
|
|
|
|
# 对数据任务类型分类,比如"情感分析"、"文本分类"、"翻译","总结"、"数学问答"....
|
|
|
|
|
|
|
|
import os
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
import json
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from tqdm import tqdm
|
|
from loguru import logger
|
|
|
|
model_name = "Laurie/Qwen2.5-7b-data-classification"
|
|
|
|
# 加载模型和 tokenizer,同时调整 padding_side 为 left(适用于 decoder-only 模型)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
torch_dtype="auto",
|
|
device_map="auto",
|
|
# attn_implementation="flash_attention_2"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # batch 推理时要左填充
|
|
|
|
# 对话模板
|
|
system_message = [{"role": "system", "content": "你是一个数据分类专家,请根据对话内容判断其所属的类别。"}]
|
|
last_query = [{"role": "user", "content": "现在请输出你的判断结果:"}]
|
|
|
|
def prepare_text(messages: list[dict]) -> str:
|
|
"""
|
|
将 messages 中的 "from"/"value" 键转为 "role"/"content",并构造完整对话文本
|
|
"""
|
|
messages = [{"role": item["from"], "content": item["value"]} for item in messages]
|
|
messages = system_message + messages + last_query
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
return text
|
|
|
|
def generate_task_types_batch(messages_batch: list[list[dict]]) -> list[str]:
|
|
"""
|
|
对一个 batch 的对话列表进行推理生成,并返回每个对话中 assistant 的回答部分
|
|
"""
|
|
# 将每个消息列表转换为完整文本
|
|
texts = [prepare_text(messages) for messages in messages_batch]
|
|
|
|
# 使用批量编码,并进行 padding 以适应批量输入
|
|
model_inputs = tokenizer(
|
|
texts,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True
|
|
).to(model.device)
|
|
|
|
with torch.no_grad():
|
|
generated_ids = model.generate(
|
|
**model_inputs,
|
|
max_new_tokens=32,
|
|
eos_token_id=[151643, 151645],
|
|
pad_token_id=151643,
|
|
do_sample=True,
|
|
repetition_penalty=1.05,
|
|
temperature=0.7,
|
|
top_p=0.8,
|
|
top_k=20
|
|
)
|
|
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
task_types = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
return task_types
|
|
|
|
def process_json(json_path: str, save_path: str, batch_size: int = 8):
|
|
"""
|
|
读取 JSON 文件,对数据进行批量推理处理,
|
|
并将结果写回保存。
|
|
"""
|
|
with open(json_path, "r", encoding="utf-8") as f:
|
|
data = json.load(f)
|
|
|
|
# 分批处理,batch_size 可根据 GPU 显存情况进行调整
|
|
for i in tqdm(range(0, len(data_slice), batch_size)):
|
|
batch = data_slice[i : i + batch_size]
|
|
conversations_batch = [item["conversations"] for item in batch]
|
|
task_types = generate_task_types_batch(conversations_batch)
|
|
for item, answer in zip(batch, task_types):
|
|
item["task_type"] = answer
|
|
|
|
with open(save_path, "w", encoding="utf-8") as f:
|
|
json.dump(data_slice, f, ensure_ascii=False, indent=4)
|
|
logger.info(f"已处理 {len(data_slice)} 条数据,保存到 {save_path}")
|
|
if __name__ == "__main__":
|
|
json_path = "./qwen_bench_300k.json"
|
|
save_path = "./qwen_bench_300k_cls.json"
|
|
process_json(json_path, save_path, batch_size=16) |