YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
使用Prompt Tuning方法微调
Usage
from peft import PeftModel, PeftConfig
peft_model_id = "Laurie/bloomz-560m_PROMPT_TUNING_CAUSAL_LM"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
# Grab a tweet and tokenize it:
inputs = tokenizer(
f'{text_column} : {"@nationalgridus I have no water and the bill is current and paid. Can you do something about this?"} Label : ',
return_tensors="pt")
# Put the model on a GPU and generate the predicted label:
model.to(device)
with torch.no_grad():
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(
input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
[
"Tweet text : @nationalgridus I have no water and the bill is current and paid. Can you do something about this? Label : complaint"
]
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support