Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
使用Prompt Tuning方法微调
|
2 |
+
|
3 |
+
**Usage**
|
4 |
+
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
+
|
7 |
+
peft_model_id = "Laurie/bloomz-560m_PROMPT_TUNING_CAUSAL_LM"
|
8 |
+
|
9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
11 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
12 |
+
|
13 |
+
# Grab a tweet and tokenize it:
|
14 |
+
inputs = tokenizer(
|
15 |
+
f'{text_column} : {"@nationalgridus I have no water and the bill is current and paid. Can you do something about this?"} Label : ',
|
16 |
+
return_tensors="pt")
|
17 |
+
|
18 |
+
# Put the model on a GPU and generate the predicted label:
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
23 |
+
outputs = model.generate(
|
24 |
+
input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3
|
25 |
+
)
|
26 |
+
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
|
27 |
+
[
|
28 |
+
"Tweet text : @nationalgridus I have no water and the bill is current and paid. Can you do something about this? Label : complaint"
|
29 |
+
]
|