robbery_dataset_tf_finetuned_20230213_delitos_validados

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1837
  • Train Sparse Categorical Accuracy: 0.9465
  • Validation Loss: 0.3629
  • Validation Sparse Categorical Accuracy: 0.8995
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
1.2571 0.6335 0.6850 0.7797 0
0.5901 0.8318 0.4557 0.8733 1
0.4303 0.8821 0.3878 0.8888 2
0.3557 0.9000 0.3471 0.9030 3
0.3096 0.9122 0.3476 0.9000 4
0.2750 0.9212 0.3380 0.9005 5
0.2474 0.9295 0.3238 0.9053 6
0.2210 0.9355 0.3464 0.9022 7
0.2016 0.9416 0.3296 0.9053 8
0.1837 0.9465 0.3629 0.8995 9

Framework versions

  • Transformers 4.26.1
  • TensorFlow 2.11.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
62
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.