Equidiff / equidiff /equi_diffpo /policy /diffusion_unet_hybrid_image_policy.py
Lillianwei's picture
mimicgen
c1f1d32
from typing import Dict
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from equi_diffpo.model.common.normalizer import LinearNormalizer
from equi_diffpo.policy.base_image_policy import BaseImagePolicy
from equi_diffpo.model.diffusion.conditional_unet1d import ConditionalUnet1D
from equi_diffpo.model.diffusion.mask_generator import LowdimMaskGenerator
from equi_diffpo.common.robomimic_config_util import get_robomimic_config
from robomimic.algo import algo_factory
from robomimic.algo.algo import PolicyAlgo
import robomimic.utils.obs_utils as ObsUtils
try:
import robomimic.models.base_nets as rmbn
if not hasattr(rmbn, 'CropRandomizer'):
raise ImportError("CropRandomizer is not in robomimic.models.base_nets")
except ImportError:
import robomimic.models.obs_core as rmbn
import equi_diffpo.model.vision.crop_randomizer as dmvc
from equi_diffpo.common.pytorch_util import dict_apply, replace_submodules
from equi_diffpo.model.vision.rot_randomizer import RotRandomizer
class DiffusionUnetHybridImagePolicy(BaseImagePolicy):
def __init__(self,
shape_meta: dict,
noise_scheduler: DDPMScheduler,
horizon,
n_action_steps,
n_obs_steps,
num_inference_steps=None,
obs_as_global_cond=True,
crop_shape=(76, 76),
diffusion_step_embed_dim=256,
down_dims=(256,512,1024),
kernel_size=5,
n_groups=8,
cond_predict_scale=True,
obs_encoder_group_norm=False,
eval_fixed_crop=False,
rot_aug=False,
# parameters passed to step
**kwargs):
super().__init__()
# parse shape_meta
action_shape = shape_meta['action']['shape']
assert len(action_shape) == 1
action_dim = action_shape[0]
obs_shape_meta = shape_meta['obs']
obs_config = {
'low_dim': [],
'rgb': [],
'depth': [],
'scan': []
}
obs_key_shapes = dict()
for key, attr in obs_shape_meta.items():
shape = attr['shape']
obs_key_shapes[key] = list(shape)
type = attr.get('type', 'low_dim')
if type == 'rgb':
obs_config['rgb'].append(key)
elif type == 'low_dim':
obs_config['low_dim'].append(key)
else:
raise RuntimeError(f"Unsupported obs type: {type}")
# get raw robomimic config
config = get_robomimic_config(
algo_name='bc_rnn',
hdf5_type='image',
task_name='square',
dataset_type='ph')
with config.unlocked():
# set config with shape_meta
config.observation.modalities.obs = obs_config
if crop_shape is None:
for key, modality in config.observation.encoder.items():
if modality.obs_randomizer_class == 'CropRandomizer':
modality['obs_randomizer_class'] = None
else:
# set random crop parameter
ch, cw = crop_shape
for key, modality in config.observation.encoder.items():
if modality.obs_randomizer_class == 'CropRandomizer':
modality.obs_randomizer_kwargs.crop_height = ch
modality.obs_randomizer_kwargs.crop_width = cw
# init global state
ObsUtils.initialize_obs_utils_with_config(config)
# load model
policy: PolicyAlgo = algo_factory(
algo_name=config.algo_name,
config=config,
obs_key_shapes=obs_key_shapes,
ac_dim=action_dim,
device='cpu',
)
obs_encoder = policy.nets['policy'].nets['encoder'].nets['obs']
if obs_encoder_group_norm:
# replace batch norm with group norm
replace_submodules(
root_module=obs_encoder,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(
num_groups=x.num_features//16,
num_channels=x.num_features)
)
# obs_encoder.obs_nets['agentview_image'].nets[0].nets
# obs_encoder.obs_randomizers['agentview_image']
if eval_fixed_crop:
replace_submodules(
root_module=obs_encoder,
predicate=lambda x: isinstance(x, rmbn.CropRandomizer),
func=lambda x: dmvc.CropRandomizer(
input_shape=x.input_shape,
crop_height=x.crop_height,
crop_width=x.crop_width,
num_crops=x.num_crops,
pos_enc=x.pos_enc
)
)
# create diffusion model
obs_feature_dim = obs_encoder.output_shape()[0]
input_dim = action_dim + obs_feature_dim
global_cond_dim = None
if obs_as_global_cond:
input_dim = action_dim
global_cond_dim = obs_feature_dim * n_obs_steps
model = ConditionalUnet1D(
input_dim=input_dim,
local_cond_dim=None,
global_cond_dim=global_cond_dim,
diffusion_step_embed_dim=diffusion_step_embed_dim,
down_dims=down_dims,
kernel_size=kernel_size,
n_groups=n_groups,
cond_predict_scale=cond_predict_scale
)
self.obs_encoder = obs_encoder
self.model = model
self.noise_scheduler = noise_scheduler
self.mask_generator = LowdimMaskGenerator(
action_dim=action_dim,
obs_dim=0 if obs_as_global_cond else obs_feature_dim,
max_n_obs_steps=n_obs_steps,
fix_obs_steps=True,
action_visible=False
)
self.normalizer = LinearNormalizer()
self.rot_randomizer = RotRandomizer()
self.horizon = horizon
self.obs_feature_dim = obs_feature_dim
self.action_dim = action_dim
self.n_action_steps = n_action_steps
self.n_obs_steps = n_obs_steps
self.obs_as_global_cond = obs_as_global_cond
self.rot_aug = rot_aug
self.kwargs = kwargs
if num_inference_steps is None:
num_inference_steps = noise_scheduler.config.num_train_timesteps
self.num_inference_steps = num_inference_steps
print("Diffusion params: %e" % sum(p.numel() for p in self.model.parameters()))
print("Vision params: %e" % sum(p.numel() for p in self.obs_encoder.parameters()))
# ========= inference ============
def conditional_sample(self,
condition_data, condition_mask,
local_cond=None, global_cond=None,
generator=None,
# keyword arguments to scheduler.step
**kwargs
):
model = self.model
scheduler = self.noise_scheduler
trajectory = torch.randn(
size=condition_data.shape,
dtype=condition_data.dtype,
device=condition_data.device,
generator=generator)
# set step values
scheduler.set_timesteps(self.num_inference_steps)
for t in scheduler.timesteps:
# 1. apply conditioning
trajectory[condition_mask] = condition_data[condition_mask]
# 2. predict model output
model_output = model(trajectory, t,
local_cond=local_cond, global_cond=global_cond)
# 3. compute previous image: x_t -> x_t-1
trajectory = scheduler.step(
model_output, t, trajectory,
generator=generator,
**kwargs
).prev_sample
# finally make sure conditioning is enforced
trajectory[condition_mask] = condition_data[condition_mask]
return trajectory
def predict_action(self, obs_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
obs_dict: must include "obs" key
result: must include "action" key
"""
assert 'past_action' not in obs_dict # not implemented yet
# normalize input
nobs = self.normalizer.normalize(obs_dict)
value = next(iter(nobs.values()))
B, To = value.shape[:2]
T = self.horizon
Da = self.action_dim
Do = self.obs_feature_dim
To = self.n_obs_steps
# build input
device = self.device
dtype = self.dtype
# handle different ways of passing observation
local_cond = None
global_cond = None
if self.obs_as_global_cond:
# condition through global feature
this_nobs = dict_apply(nobs, lambda x: x[:,:To,...].reshape(-1,*x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, Do
global_cond = nobs_features.reshape(B, -1)
# empty data for action
cond_data = torch.zeros(size=(B, T, Da), device=device, dtype=dtype)
cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
else:
# condition through impainting
this_nobs = dict_apply(nobs, lambda x: x[:,:To,...].reshape(-1,*x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, To, Do
nobs_features = nobs_features.reshape(B, To, -1)
cond_data = torch.zeros(size=(B, T, Da+Do), device=device, dtype=dtype)
cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
cond_data[:,:To,Da:] = nobs_features
cond_mask[:,:To,Da:] = True
# run sampling
nsample = self.conditional_sample(
cond_data,
cond_mask,
local_cond=local_cond,
global_cond=global_cond,
**self.kwargs)
# unnormalize prediction
naction_pred = nsample[...,:Da]
action_pred = self.normalizer['action'].unnormalize(naction_pred)
# get action
start = To - 1
end = start + self.n_action_steps
action = action_pred[:,start:end]
result = {
'action': action,
'action_pred': action_pred
}
return result
# ========= training ============
def set_normalizer(self, normalizer: LinearNormalizer):
self.normalizer.load_state_dict(normalizer.state_dict())
def compute_loss(self, batch):
# normalize input
assert 'valid_mask' not in batch
nobs = self.normalizer.normalize(batch['obs'])
nactions = self.normalizer['action'].normalize(batch['action'])
if self.rot_aug:
nobs, nactions = self.rot_randomizer(nobs, nactions)
batch_size = nactions.shape[0]
horizon = nactions.shape[1]
# handle different ways of passing observation
local_cond = None
global_cond = None
trajectory = nactions
cond_data = trajectory
if self.obs_as_global_cond:
# reshape B, T, ... to B*T
this_nobs = dict_apply(nobs,
lambda x: x[:,:self.n_obs_steps,...].reshape(-1,*x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, Do
global_cond = nobs_features.reshape(batch_size, -1)
else:
# reshape B, T, ... to B*T
this_nobs = dict_apply(nobs, lambda x: x.reshape(-1, *x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, T, Do
nobs_features = nobs_features.reshape(batch_size, horizon, -1)
cond_data = torch.cat([nactions, nobs_features], dim=-1)
trajectory = cond_data.detach()
# generate impainting mask
condition_mask = self.mask_generator(trajectory.shape)
# Sample noise that we'll add to the images
noise = torch.randn(trajectory.shape, device=trajectory.device)
bsz = trajectory.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, self.noise_scheduler.config.num_train_timesteps,
(bsz,), device=trajectory.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_trajectory = self.noise_scheduler.add_noise(
trajectory, noise, timesteps)
# compute loss mask
loss_mask = ~condition_mask
# apply conditioning
noisy_trajectory[condition_mask] = cond_data[condition_mask]
# Predict the noise residual
pred = self.model(noisy_trajectory, timesteps,
local_cond=local_cond, global_cond=global_cond)
pred_type = self.noise_scheduler.config.prediction_type
if pred_type == 'epsilon':
target = noise
elif pred_type == 'sample':
target = trajectory
else:
raise ValueError(f"Unsupported prediction type {pred_type}")
loss = F.mse_loss(pred, target, reduction='none')
loss = loss * loss_mask.type(loss.dtype)
loss = reduce(loss, 'b ... -> b (...)', 'mean')
loss = loss.mean()
return loss