ArTST - Arabic Text Speech Transformer
Collection
Open source project for Arabic Speech Recognition and Generation
•
9 items
•
Updated
•
6
ArTST model finetuned for automatic speech recognition (speech-to-text) on MGB2.
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
import soundfile as sf
from transformers import (
SpeechT5Config,
SpeechT5FeatureExtractor,
SpeechT5ForSpeechToText,
SpeechT5Processor,
SpeechT5Tokenizer,
)
from custom_tokenizer import CustomTextTokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = SpeechT5Tokenizer.from_pretrained("mbzuai/artst_asr_v2")
processor = SpeechT5Processor.from_pretrained("mbzuai/artst_asr_v2" , tokenizer=tokenizer)
model = SpeechT5ForSpeechToText.from_pretrained("mbzuai/artst_asr_v2").to(device)
audio, sr = sf.read("audio.wav")
inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
predicted_ids = model.generate(**inputs.to(device), max_length=250)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "MBZUAI/artst_asr_v2"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
audio , sr = sf.read("path/to/audio/file")
if sr != 16000:
audio = librosa.resample(audio), orig_sr=sr, target_sr=16000)
result = pipe(audio)
print(result['text'])
BibTeX:
@misc{djanibekov2024dialectalcoveragegeneralizationarabic,
title={Dialectal Coverage And Generalization in Arabic Speech Recognition},
author={Amirbek Djanibekov and Hawau Olamide Toyin and Raghad Alshalan and Abdullah Alitr and Hanan Aldarmaki},
year={2024},
eprint={2411.05872},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.05872},
}
@inproceedings{toyin-etal-2023-artst,
title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
author = "Toyin, Hawau and
Djanibekov, Amirbek and
Kulkarni, Ajinkya and
Aldarmaki, Hanan",
booktitle = "Proceedings of ArabicNLP 2023",
month = dec,
year = "2023",
address = "Singapore (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.arabicnlp-1.5",
doi = "10.18653/v1/2023.arabicnlp-1.5",
pages = "41--51",
}