MISHANM/Kashmiri_text_generation_Llama3_8B_instruct

This model is fine-tuned for the Kashmiri language, capable of answering queries and translating text Between English and Kashmiri . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.

Model Details

  1. Language: Kashmiri
  2. Tasks: Question Answering, Translation (English to Kashmiri )
  3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct

Training Details

The model is trained on approx 49K instruction samples.

  1. GPUs: 2*AMD Instinct™ MI210 Accelerators

Inference with HuggingFace


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Kashmiri_text_generation_Llama3_8B_instruct"

model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a Kashmiri language expert and linguist, with same knowledge give response in Kashmiri language.",
       },
       {"role": "user", "content": prompt}
   ]

   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt")
   output = model.generate(  # Use model.module for DataParallel
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Give a poem on LLM ."""
translated_text = generate_text(prompt)
print(translated_text)


Citation Information

@misc{MISHANM/Kashmiri_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Kashmiri Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
  • PEFT 0.12.0
Downloads last month
21
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for MISHANM/Kashmiri_text_generation_Llama3_8B_instruct

Adapter
(747)
this model