SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Marco127/Base_Test1_")
# Run inference
sentences = [
'\nA hotel guest may not leave the room to another person, even if the time for which he or she has paid has\nnot expired.',
'\nA hotel guest may not leave the room to another person, even if the time for which he or she has paid has\nnot expired.',
'Orders for accommodation services made in writing or by other means, which have been\nconfirmed by the hotel and have not been cancelled by the customer in a timely manner, are\nmutually binding. The front office manager keeps a record of all received and confirmed\norders.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
dot_accuracy | 0.6671 |
dot_accuracy_threshold | 48.9305 |
dot_f1 | 0.4987 |
dot_f1_threshold | 33.9523 |
dot_precision | 0.3325 |
dot_recall | 0.9964 |
dot_ap | 0.3126 |
dot_mcc | 0.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,362 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 48.75 tokens
- max: 156 tokens
- min: 11 tokens
- mean: 48.75 tokens
- max: 156 tokens
- 0: ~69.20%
- 1: ~30.80%
- Samples:
sentence1 sentence2 label Hotel guests may receive visits in their hotel rooms from guests not staying in the hotel.
Visitors must present a personal document at the hotel reception and register in the visitors'
book. These visits can last for only a maximum of 2 hours and must finish until 10:00 pm.Hotel guests may receive visits in their hotel rooms from guests not staying in the hotel.
Visitors must present a personal document at the hotel reception and register in the visitors'
book. These visits can last for only a maximum of 2 hours and must finish until 10:00 pm.0
We do not guarantee that any special requests will be met, but we will use our best endeavours to do so as
well as using our best endeavours to advise you if that is not the case.
We do not guarantee that any special requests will be met, but we will use our best endeavours to do so as
well as using our best endeavours to advise you if that is not the case.0
Pool and Fitness Room hours and guidelines are provided at check in. All rules and times will be enforced to
allow efficient operation of the hotel and for the comfort and safety of all guests.
Pool and Fitness Room hours and guidelines are provided at check in. All rules and times will be enforced to
allow efficient operation of the hotel and for the comfort and safety of all guests.1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 841 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 841 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 48.1 tokens
- max: 156 tokens
- min: 11 tokens
- mean: 48.1 tokens
- max: 156 tokens
- 0: ~66.71%
- 1: ~33.29%
- Samples:
sentence1 sentence2 label In the case of fire, guests are obliged to notify the reception without hesitation, either
directly, or on the phone (0) and may use a portable fire extinguisher located at the corridors
of each floor to extinguish the flames. The use of the elevator in case of fire is prohibited!In the case of fire, guests are obliged to notify the reception without hesitation, either
directly, or on the phone (0) and may use a portable fire extinguisher located at the corridors
of each floor to extinguish the flames. The use of the elevator in case of fire is prohibited!0
Children should be accompanied in locations such as stairways etc.
The rooms are for accommodation service. Each individual staying in a room
must be registered at the reception.
Children should be accompanied in locations such as stairways etc.
The rooms are for accommodation service. Each individual staying in a room
must be registered at the reception.0
Towels for the Fitness Room and Pool are located in those areas. Towels from guest rooms are not to be
taken to the Pool or Fitness Room.
Towels for the Fitness Room and Pool are located in those areas. Towels from guest rooms are not to be
taken to the Pool or Fitness Room.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dot_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.3126 |
0.4739 | 100 | 0.0011 | 0.0001 | - |
0.9479 | 200 | 0.0002 | 0.0000 | - |
1.4218 | 300 | 0.0 | 0.0000 | - |
1.8957 | 400 | 0.0001 | 0.0000 | - |
2.3697 | 500 | 0.0 | 0.0000 | - |
2.8436 | 600 | 0.0 | 0.0000 | - |
3.3175 | 700 | 0.0 | 0.0000 | - |
3.7915 | 800 | 0.0 | 0.0000 | - |
4.2654 | 900 | 0.0 | 0.0000 | - |
4.7393 | 1000 | 0.0 | 0.0000 | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Marco127/Base_Test1_
Evaluation results
- Dot Accuracy on Unknownself-reported0.667
- Dot Accuracy Threshold on Unknownself-reported48.930
- Dot F1 on Unknownself-reported0.499
- Dot F1 Threshold on Unknownself-reported33.952
- Dot Precision on Unknownself-reported0.333
- Dot Recall on Unknownself-reported0.996
- Dot Ap on Unknownself-reported0.313
- Dot Mcc on Unknownself-reported0.000