Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: ibm-granite/granite-3.1-8b-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

resize_token_embeddings_to_32x: true
load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
- path: task_decomposition_training_data_math.jsonl
  type: chat_template
  chat_template: tokenizer_default
  field_messages: conversations
  message_field_role: role
  message_field_content: value
dataset_prepared_path: last_run_prepared_sft

val_set_size: 0
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
output_dir: granite-math-plans-3.1-8b-lora

wandb_project: null
wandb_entity: null
wandb_watch: null
wandb_name: null
wandb_log_model: null

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 8
micro_batch_size: 1
eval_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-05

max_grad_norm: 1.0
logging_steps: 10

train_on_inputs: false
group_by_length: false

bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
eval_steps:
save_strategy: epoch
eval_table_size:
num_processes: 8
deepspeed:
weight_decay: 0.0

granite-math-plans-3.1-8b-lora

This model is a fine-tuned version of ibm-granite/granite-3.1-8b-instruct on the task_decomposition_training_data_math.jsonl dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 154
  • num_epochs: 3

Training results

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for MatVet/granite-math-plans-3.1-8b-lora

Adapter
(3)
this model