vit-msn-small-lateral_flow_ivalidation_green_channel
This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5924
- Accuracy: 0.7454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9312 | 0.9231 | 6 | 0.9478 | 0.2788 |
0.7936 | 2.0 | 13 | 0.8935 | 0.2491 |
0.718 | 2.9231 | 19 | 0.8518 | 0.2249 |
0.6787 | 4.0 | 26 | 0.8097 | 0.2119 |
0.6538 | 4.9231 | 32 | 0.7776 | 0.2770 |
0.6265 | 6.0 | 39 | 0.7428 | 0.3662 |
0.5812 | 6.9231 | 45 | 0.7191 | 0.4424 |
0.6138 | 8.0 | 52 | 0.6996 | 0.4963 |
0.57 | 8.9231 | 58 | 0.6900 | 0.5409 |
0.5595 | 10.0 | 65 | 0.6804 | 0.5762 |
0.5288 | 10.9231 | 71 | 0.6727 | 0.6004 |
0.5094 | 12.0 | 78 | 0.6613 | 0.6320 |
0.5073 | 12.9231 | 84 | 0.6490 | 0.6636 |
0.4504 | 14.0 | 91 | 0.6386 | 0.6970 |
0.4868 | 14.9231 | 97 | 0.6305 | 0.7156 |
0.4799 | 16.0 | 104 | 0.6264 | 0.7175 |
0.4861 | 16.9231 | 110 | 0.6235 | 0.7175 |
0.4975 | 18.0 | 117 | 0.6163 | 0.7286 |
0.4712 | 18.9231 | 123 | 0.6127 | 0.7398 |
0.468 | 20.0 | 130 | 0.6107 | 0.7416 |
0.4562 | 20.9231 | 136 | 0.6070 | 0.7454 |
0.5195 | 22.0 | 143 | 0.6056 | 0.7454 |
0.4385 | 22.9231 | 149 | 0.6033 | 0.7416 |
0.4211 | 24.0 | 156 | 0.6050 | 0.7342 |
0.4364 | 24.9231 | 162 | 0.6023 | 0.7361 |
0.4327 | 26.0 | 169 | 0.5980 | 0.7416 |
0.4757 | 26.9231 | 175 | 0.6000 | 0.7361 |
0.4287 | 28.0 | 182 | 0.5924 | 0.7454 |
0.4313 | 28.9231 | 188 | 0.5970 | 0.7361 |
0.4483 | 30.0 | 195 | 0.5962 | 0.7398 |
0.3956 | 30.9231 | 201 | 0.5976 | 0.7305 |
0.41 | 32.0 | 208 | 0.6060 | 0.7212 |
0.4371 | 32.9231 | 214 | 0.6050 | 0.7193 |
0.4169 | 34.0 | 221 | 0.6045 | 0.7212 |
0.3882 | 34.9231 | 227 | 0.6020 | 0.7230 |
0.5097 | 36.0 | 234 | 0.6011 | 0.7286 |
0.476 | 36.9231 | 240 | 0.6027 | 0.7268 |
0.387 | 38.0 | 247 | 0.6012 | 0.7249 |
0.4744 | 38.9231 | 253 | 0.6017 | 0.7230 |
0.4712 | 40.0 | 260 | 0.6025 | 0.7230 |
0.4242 | 40.9231 | 266 | 0.6022 | 0.7230 |
0.4087 | 42.0 | 273 | 0.6021 | 0.7230 |
0.4009 | 42.9231 | 279 | 0.6026 | 0.7230 |
0.4219 | 44.0 | 286 | 0.6026 | 0.7230 |
0.4208 | 44.9231 | 292 | 0.6024 | 0.7230 |
0.3644 | 46.0 | 299 | 0.6013 | 0.7230 |
0.4458 | 46.9231 | 305 | 0.5997 | 0.7286 |
0.425 | 48.0 | 312 | 0.5991 | 0.7286 |
0.3982 | 48.9231 | 318 | 0.5995 | 0.7286 |
0.4167 | 50.0 | 325 | 0.5992 | 0.7286 |
0.4112 | 50.9231 | 331 | 0.5992 | 0.7286 |
0.4073 | 52.0 | 338 | 0.5992 | 0.7286 |
0.4413 | 52.9231 | 344 | 0.5991 | 0.7286 |
0.4326 | 54.0 | 351 | 0.5991 | 0.7286 |
0.4206 | 54.9231 | 357 | 0.5992 | 0.7286 |
0.3776 | 56.0 | 364 | 0.5993 | 0.7286 |
0.3792 | 56.9231 | 370 | 0.5994 | 0.7286 |
0.4075 | 58.0 | 377 | 0.5995 | 0.7286 |
0.4412 | 58.9231 | 383 | 0.5995 | 0.7286 |
0.4137 | 60.0 | 390 | 0.5995 | 0.7286 |
0.424 | 60.9231 | 396 | 0.5995 | 0.7286 |
0.3988 | 62.0 | 403 | 0.5997 | 0.7286 |
0.4167 | 62.9231 | 409 | 0.5996 | 0.7286 |
0.41 | 64.0 | 416 | 0.5997 | 0.7286 |
0.4235 | 64.9231 | 422 | 0.5997 | 0.7286 |
0.4544 | 66.0 | 429 | 0.5998 | 0.7286 |
0.4495 | 66.9231 | 435 | 0.5997 | 0.7286 |
0.424 | 68.0 | 442 | 0.5997 | 0.7286 |
0.4053 | 68.9231 | 448 | 0.5997 | 0.7286 |
0.426 | 70.0 | 455 | 0.5999 | 0.7286 |
0.3865 | 70.9231 | 461 | 0.6000 | 0.7286 |
0.3732 | 72.0 | 468 | 0.6001 | 0.7286 |
0.4289 | 72.9231 | 474 | 0.6002 | 0.7286 |
0.4524 | 74.0 | 481 | 0.6002 | 0.7286 |
0.4081 | 74.9231 | 487 | 0.6002 | 0.7286 |
0.384 | 76.0 | 494 | 0.6001 | 0.7286 |
0.4177 | 76.9231 | 500 | 0.6000 | 0.7286 |
0.3777 | 78.0 | 507 | 0.6000 | 0.7286 |
0.4226 | 78.9231 | 513 | 0.6000 | 0.7286 |
0.419 | 80.0 | 520 | 0.6000 | 0.7286 |
0.3956 | 80.9231 | 526 | 0.6000 | 0.7286 |
0.3669 | 82.0 | 533 | 0.6000 | 0.7286 |
0.3902 | 82.9231 | 539 | 0.6000 | 0.7286 |
0.4193 | 84.0 | 546 | 0.6001 | 0.7286 |
0.4115 | 84.9231 | 552 | 0.6001 | 0.7286 |
0.3923 | 86.0 | 559 | 0.6001 | 0.7286 |
0.4011 | 86.9231 | 565 | 0.6001 | 0.7286 |
0.4765 | 88.0 | 572 | 0.6000 | 0.7286 |
0.4034 | 88.9231 | 578 | 0.5999 | 0.7286 |
0.3867 | 90.0 | 585 | 0.5998 | 0.7286 |
0.4201 | 90.9231 | 591 | 0.5998 | 0.7286 |
0.4346 | 92.0 | 598 | 0.5998 | 0.7286 |
0.4171 | 92.3077 | 600 | 0.5998 | 0.7286 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_green_channel
Base model
facebook/vit-msn-small