| # 🚀 MiniMax 模型 Transformers 部署指南 | |
| ## 📖 简介 | |
| 本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。 | |
| ## 🛠️ 环境准备 | |
| ### 安装 Transformers | |
| ```bash | |
| pip install transformers torch accelerate | |
| ``` | |
| ## 📋 基本使用示例 | |
| 预训练模型可以按照以下方式使用: | |
| ```python | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
| MODEL_PATH = "{MODEL_PATH}" | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
| messages = [ | |
| {"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]}, | |
| {"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]}, | |
| {"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]} | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer(text, return_tensors="pt").to(model.device) | |
| generation_config = GenerationConfig( | |
| max_new_tokens=20, | |
| eos_token_id=tokenizer.eos_token_id, | |
| use_cache=True, | |
| ) | |
| generated_ids = model.generate(**model_inputs, generation_config=generation_config) | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| print(response) | |
| ``` | |
| ## ⚡ 性能优化 | |
| ### 使用 Flash Attention 加速 | |
| 上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。 | |
| 首先,确保安装最新版本的 Flash Attention 2: | |
| ```bash | |
| pip install -U flash-attn --no-build-isolation | |
| ``` | |
| 还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。 | |
| 要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段: | |
| ```python | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| MODEL_PATH = "{MODEL_PATH}" | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
| prompt = "My favourite condiment is" | |
| model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") | |
| generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) | |
| response = tokenizer.batch_decode(generated_ids)[0] | |
| print(response) | |
| ``` | |
| ## 📮 获取支持 | |
| 如果您在部署 MiniMax-M1 模型过程中遇到任何问题: | |
| - 请查看我们的官方文档 | |
| - 通过官方渠道联系我们的技术支持团队 | |
| - 在我们的 GitHub 仓库提交 Issue | |
| 我们会持续优化 Transformers 上的部署体验,欢迎您的反馈! | |