File size: 3,751 Bytes
09f390e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: agpl-3.0
library_name: ultralytics
tags:
- object-detection
- yolov8
- beetle
- insect
- computer-vision
datasets:
- roboflow
metrics:
- map
model-index:
- name: beetle-detection-yolov8
results:
- task:
type: object-detection
dataset:
type: beetle-detection
name: Beetle Detection Dataset
metrics:
- type: map
value: 0.9763
name: [email protected]
- type: map
value: 0.8956
name: [email protected]:0.95
---
# YOLOv8 Beetle Detection Model
## Model Description
This is a YOLOv8-based object detection model fine-tuned for beetle detection. The model was trained on a custom dataset of 500 beetle images from Roboflow and achieves excellent performance with [email protected] of 97.63%.
## Model Details
- **Base Model**: YOLOv8n (nano) from Ultralytics
- **Task**: Object Detection
- **Classes**: 1 (beetle)
- **Input Size**: 640x640 pixels
- **Framework**: PyTorch
- **License**: AGPL-3.0 (inherited from YOLOv8)
## Performance Metrics
| Metric | Value |
|--------|-------|
| [email protected] | 97.63% |
| [email protected]:0.95 | 89.56% |
| Precision | 95.2% |
| Recall | 94.8% |
| Processing Time (CPU) | ~100ms per image |
## Dataset
- **Source**: Roboflow Universe
- **License**: CC BY 4.0
- **Images**: 500 annotated beetle images
- **Split**: 80% train, 15% validation, 5% test
- **Augmentations**: Applied during training for robustness
## Usage
### Installation
```bash
pip install ultralytics
```
### Python Inference
```python
from ultralytics import YOLO
import cv2
# Load the model
model = YOLO('best.pt')
# Run inference
results = model('path/to/image.jpg')
# Process results
for result in results:
boxes = result.boxes
for box in boxes:
# Get coordinates and confidence
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
confidence = box.conf[0].cpu().numpy()
print(f"Beetle detected with confidence: {confidence:.2f}")
print(f"Bounding box: ({x1}, {y1}, {x2}, {y2})")
```
### Command Line
```bash
yolo predict model=best.pt source='path/to/image.jpg'
```
## Training Details
- **Epochs**: 100
- **Batch Size**: 16
- **Optimizer**: AdamW
- **Learning Rate**: 0.01 (initial)
- **Hardware**: Google Colab GPU
- **Training Time**: ~2 hours
## Applications
This model is designed for:
- Agricultural monitoring
- Entomological research
- Biodiversity studies
- Educational purposes
- IoT-based pest detection systems
## Limitations
- Trained specifically on beetle images
- Performance may vary with different lighting conditions
- Best results with clear, well-lit images
- Single class detection only
## Model Files
- `best.pt`: PyTorch model weights (recommended)
- `best.onnx`: ONNX format for cross-platform deployment
## Citation
If you use this model in your research, please cite:
```bibtex
@model{beetle-detection-yolov8,
title={YOLOv8 Beetle Detection Model},
author={Insect Detection Training Project},
year={2025},
url={https://huggingface.co/Murasan/beetle-detection-yolov8}
}
```
## License
This model is licensed under AGPL-3.0, inherited from the original YOLOv8 implementation by Ultralytics.
### Base Model Attribution
- **YOLOv8**: [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics)
- **Original License**: AGPL-3.0
- **Paper**: [YOLOv8: A Real-Time Object Detection Algorithm](https://arxiv.org/abs/2305.09972)
## Related Projects
- [Base Training Repository](https://github.com/Murasan201/insect-detection-training)
- [Hailo 8L Deployment Guide](https://github.com/Murasan201/insect-detection-training/blob/main/HAILO_DEPLOYMENT_GUIDE.md)
## Contact
For questions or issues, please open an issue in the [base repository](https://github.com/Murasan201/insect-detection-training/issues). |