File size: 3,751 Bytes
09f390e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: agpl-3.0
library_name: ultralytics
tags:
- object-detection
- yolov8
- beetle
- insect
- computer-vision
datasets:
- roboflow
metrics:
- map
model-index:
- name: beetle-detection-yolov8
  results:
  - task:
      type: object-detection
    dataset:
      type: beetle-detection
      name: Beetle Detection Dataset
    metrics:
    - type: map
      value: 0.9763
      name: [email protected]
    - type: map
      value: 0.8956
      name: [email protected]:0.95
---

# YOLOv8 Beetle Detection Model

## Model Description

This is a YOLOv8-based object detection model fine-tuned for beetle detection. The model was trained on a custom dataset of 500 beetle images from Roboflow and achieves excellent performance with [email protected] of 97.63%.

## Model Details

- **Base Model**: YOLOv8n (nano) from Ultralytics
- **Task**: Object Detection
- **Classes**: 1 (beetle)
- **Input Size**: 640x640 pixels
- **Framework**: PyTorch
- **License**: AGPL-3.0 (inherited from YOLOv8)

## Performance Metrics

| Metric | Value |
|--------|-------|
| [email protected] | 97.63% |
| [email protected]:0.95 | 89.56% |
| Precision | 95.2% |
| Recall | 94.8% |
| Processing Time (CPU) | ~100ms per image |

## Dataset

- **Source**: Roboflow Universe
- **License**: CC BY 4.0
- **Images**: 500 annotated beetle images
- **Split**: 80% train, 15% validation, 5% test
- **Augmentations**: Applied during training for robustness

## Usage

### Installation

```bash
pip install ultralytics
```

### Python Inference

```python
from ultralytics import YOLO
import cv2

# Load the model
model = YOLO('best.pt')

# Run inference
results = model('path/to/image.jpg')

# Process results
for result in results:
    boxes = result.boxes
    for box in boxes:
        # Get coordinates and confidence
        x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
        confidence = box.conf[0].cpu().numpy()
        
        print(f"Beetle detected with confidence: {confidence:.2f}")
        print(f"Bounding box: ({x1}, {y1}, {x2}, {y2})")
```

### Command Line

```bash
yolo predict model=best.pt source='path/to/image.jpg'
```

## Training Details

- **Epochs**: 100
- **Batch Size**: 16
- **Optimizer**: AdamW
- **Learning Rate**: 0.01 (initial)
- **Hardware**: Google Colab GPU
- **Training Time**: ~2 hours

## Applications

This model is designed for:
- Agricultural monitoring
- Entomological research
- Biodiversity studies
- Educational purposes
- IoT-based pest detection systems

## Limitations

- Trained specifically on beetle images
- Performance may vary with different lighting conditions
- Best results with clear, well-lit images
- Single class detection only

## Model Files

- `best.pt`: PyTorch model weights (recommended)
- `best.onnx`: ONNX format for cross-platform deployment

## Citation

If you use this model in your research, please cite:

```bibtex
@model{beetle-detection-yolov8,
  title={YOLOv8 Beetle Detection Model},
  author={Insect Detection Training Project},
  year={2025},
  url={https://huggingface.co/Murasan/beetle-detection-yolov8}
}
```

## License

This model is licensed under AGPL-3.0, inherited from the original YOLOv8 implementation by Ultralytics.

### Base Model Attribution

- **YOLOv8**: [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics)
- **Original License**: AGPL-3.0
- **Paper**: [YOLOv8: A Real-Time Object Detection Algorithm](https://arxiv.org/abs/2305.09972)

## Related Projects

- [Base Training Repository](https://github.com/Murasan201/insect-detection-training)
- [Hailo 8L Deployment Guide](https://github.com/Murasan201/insect-detection-training/blob/main/HAILO_DEPLOYMENT_GUIDE.md)

## Contact

For questions or issues, please open an issue in the [base repository](https://github.com/Murasan201/insect-detection-training/issues).