File size: 31,271 Bytes
ed69a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6c9745be",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/urllib3/__init__.py:35: NotOpenSSLWarning: urllib3 v2 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "LSTM training...\n",
      "LSTM Epoch 1: Train loss 0.9225 | Validation loss 0.9003\n",
      "LSTM Epoch 5: Train loss 0.9064 | Validation loss 0.8971\n",
      "LSTM Epoch 10: Train loss 0.9024 | Validation loss 0.8979\n",
      "LSTM Epoch 15: Train loss 0.9013 | Validation loss 0.8975\n",
      "LSTM Epoch 20: Train loss 0.9458 | Validation loss 0.9297\n",
      "LSTM Epoch 25: Train loss 0.9019 | Validation loss 0.9019\n",
      "LSTM Epoch 30: Train loss 0.9034 | Validation loss 0.9004\n",
      "LSTM Epoch 35: Train loss 0.9002 | Validation loss 0.9023\n",
      "LSTM Epoch 40: Train loss 0.8989 | Validation loss 0.9054\n",
      "LSTM Epoch 45: Train loss 0.8987 | Validation loss 0.9030\n",
      "LSTM Epoch 50: Train loss 0.8978 | Validation loss 0.9007\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "LSTM on test1 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.0000    0.0000    0.0000       165\n",
      "     neutral     0.6585    1.0000    0.7941       430\n",
      "    negative     0.0000    0.0000    0.0000        58\n",
      "\n",
      "    accuracy                         0.6585       653\n",
      "   macro avg     0.2195    0.3333    0.2647       653\n",
      "weighted avg     0.4336    0.6585    0.5229       653\n",
      "\n",
      "LSTM on test1 Confusion matrix:\n",
      " [[  0 165   0]\n",
      " [  0 430   0]\n",
      " [  0  58   0]]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "LSTM on test2 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.0000    0.0000    0.0000       216\n",
      "     neutral     0.5816    1.0000    0.7355       431\n",
      "    negative     0.0000    0.0000    0.0000        94\n",
      "\n",
      "    accuracy                         0.5816       741\n",
      "   macro avg     0.1939    0.3333    0.2452       741\n",
      "weighted avg     0.3383    0.5816    0.4278       741\n",
      "\n",
      "LSTM on test2 Confusion matrix:\n",
      " [[  0 216   0]\n",
      " [  0 431   0]\n",
      " [  0  94   0]]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
      "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "LSTM on test3 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.0000    0.0000    0.0000       267\n",
      "     neutral     0.3317    1.0000    0.4981       263\n",
      "    negative     0.0000    0.0000    0.0000       263\n",
      "\n",
      "    accuracy                         0.3317       793\n",
      "   macro avg     0.1106    0.3333    0.1660       793\n",
      "weighted avg     0.1100    0.3317    0.1652       793\n",
      "\n",
      "LSTM on test3 Confusion matrix:\n",
      " [[  0 267   0]\n",
      " [  0 263   0]\n",
      " [  0 263   0]]\n",
      "\n",
      "GRU training...\n",
      "GRU Epoch 1: Train loss 0.9163 | Validation loss 0.8981\n",
      "GRU Epoch 5: Train loss 0.9048 | Validation loss 0.8972\n",
      "GRU Epoch 10: Train loss 0.8214 | Validation loss 0.8023\n",
      "GRU Epoch 15: Train loss 0.7494 | Validation loss 0.7687\n",
      "GRU Epoch 20: Train loss 0.6789 | Validation loss 0.7580\n",
      "GRU Epoch 25: Train loss 0.5857 | Validation loss 0.8096\n",
      "GRU Epoch 30: Train loss 0.4784 | Validation loss 0.9778\n",
      "GRU Epoch 35: Train loss 0.3589 | Validation loss 1.1809\n",
      "GRU Epoch 40: Train loss 0.2612 | Validation loss 1.3460\n",
      "GRU Epoch 45: Train loss 0.1947 | Validation loss 1.4596\n",
      "GRU Epoch 50: Train loss 0.1336 | Validation loss 1.7536\n",
      "\n",
      "GRU on test1 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.4322    0.5212    0.4725       165\n",
      "     neutral     0.7457    0.7023    0.7234       430\n",
      "    negative     0.1633    0.1379    0.1495        58\n",
      "\n",
      "    accuracy                         0.6064       653\n",
      "   macro avg     0.4470    0.4538    0.4485       653\n",
      "weighted avg     0.6147    0.6064    0.6090       653\n",
      "\n",
      "GRU on test1 Confusion matrix:\n",
      " [[ 86  69  10]\n",
      " [ 97 302  31]\n",
      " [ 16  34   8]]\n",
      "\n",
      "GRU on test2 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.8682    0.8843    0.8761       216\n",
      "     neutral     0.9211    0.9211    0.9211       431\n",
      "    negative     0.7778    0.7447    0.7609        94\n",
      "\n",
      "    accuracy                         0.8880       741\n",
      "   macro avg     0.8557    0.8500    0.8527       741\n",
      "weighted avg     0.8875    0.8880    0.8877       741\n",
      "\n",
      "GRU on test2 Confusion matrix:\n",
      " [[191  19   6]\n",
      " [ 20 397  14]\n",
      " [  9  15  70]]\n",
      "\n",
      "GRU on test3 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.7510    0.7004    0.7248       267\n",
      "     neutral     0.5524    0.9011    0.6850       263\n",
      "    negative     0.7652    0.3346    0.4656       263\n",
      "\n",
      "    accuracy                         0.6456       793\n",
      "   macro avg     0.6896    0.6454    0.6251       793\n",
      "weighted avg     0.6899    0.6456    0.6256       793\n",
      "\n",
      "GRU on test3 Confusion matrix:\n",
      " [[187  58  22]\n",
      " [ 21 237   5]\n",
      " [ 41 134  88]]\n",
      "\n",
      "CNN training...\n",
      "CNN Epoch 1: Train loss 0.9112 | Validation loss 0.8838\n",
      "CNN Epoch 5: Train loss 0.8149 | Validation loss 0.8114\n",
      "CNN Epoch 10: Train loss 0.7071 | Validation loss 0.7645\n",
      "CNN Epoch 15: Train loss 0.6159 | Validation loss 0.7597\n",
      "CNN Epoch 20: Train loss 0.5508 | Validation loss 0.7568\n",
      "CNN Epoch 25: Train loss 0.4648 | Validation loss 0.7638\n",
      "CNN Epoch 30: Train loss 0.4148 | Validation loss 0.7818\n",
      "CNN Epoch 35: Train loss 0.3572 | Validation loss 0.8047\n",
      "CNN Epoch 40: Train loss 0.3099 | Validation loss 0.8082\n",
      "CNN Epoch 45: Train loss 0.2741 | Validation loss 0.8595\n",
      "CNN Epoch 50: Train loss 0.2376 | Validation loss 0.9191\n",
      "\n",
      "CNN on test1 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.4656    0.3697    0.4122       165\n",
      "     neutral     0.7224    0.8535    0.7825       430\n",
      "    negative     0.6429    0.1552    0.2500        58\n",
      "\n",
      "    accuracy                         0.6692       653\n",
      "   macro avg     0.6103    0.4595    0.4816       653\n",
      "weighted avg     0.6505    0.6692    0.6416       653\n",
      "\n",
      "CNN on test1 Confusion matrix:\n",
      " [[ 61 103   1]\n",
      " [ 59 367   4]\n",
      " [ 11  38   9]]\n",
      "\n",
      "CNN on test2 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.9000    0.8333    0.8654       216\n",
      "     neutral     0.8936    0.9745    0.9323       431\n",
      "    negative     0.9296    0.7021    0.8000        94\n",
      "\n",
      "    accuracy                         0.8988       741\n",
      "   macro avg     0.9077    0.8366    0.8659       741\n",
      "weighted avg     0.9000    0.8988    0.8960       741\n",
      "\n",
      "CNN on test2 Confusion matrix:\n",
      " [[180  33   3]\n",
      " [  9 420   2]\n",
      " [ 11  17  66]]\n",
      "\n",
      "CNN on test3 Classification report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "    positive     0.8352    0.5693    0.6771       267\n",
      "     neutral     0.4674    0.9810    0.6331       263\n",
      "    negative     0.8983    0.2015    0.3292       263\n",
      "\n",
      "    accuracy                         0.5839       793\n",
      "   macro avg     0.7336    0.5839    0.5465       793\n",
      "weighted avg     0.7341    0.5839    0.5471       793\n",
      "\n",
      "CNN on test3 Confusion matrix:\n",
      " [[152 109   6]\n",
      " [  5 258   0]\n",
      " [ 25 185  53]]\n"
     ]
    }
   ],
   "source": [
    "# !pip install gensim scikit-learn pandas numpy torch tqdm\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from sklearn.metrics import classification_report, confusion_matrix\n",
    "from sklearn.model_selection import train_test_split\n",
    "from collections import Counter\n",
    "import gensim\n",
    "\n",
    "# --- UČITAVANJE I PODJELA PODATAKA ---\n",
    "full_df = pd.read_csv('TRAIN.csv')\n",
    "\n",
    "# Učitaj sve test skupove\n",
    "test1_df = pd.read_csv('test-1.csv')\n",
    "test2_df = pd.read_csv('test-2.csv')\n",
    "test3_df = pd.read_csv('test-3.csv')\n",
    "\n",
    "def get_text_column(df):\n",
    "    for col in df.columns:\n",
    "        if col.lower() in ['sentence', 'text']:\n",
    "            return col\n",
    "    raise ValueError(\"Nema stupca 'Sentence' ili 'Text'!\")\n",
    "\n",
    "text_col = get_text_column(full_df)\n",
    "\n",
    "# Stratified split: 95% train, 5% valid\n",
    "train_df, valid_df = train_test_split(full_df, test_size=0.05, stratify=full_df['Label'], random_state=42)\n",
    "\n",
    "# --- TOKENIZACIJA I VOKABULAR ---\n",
    "def tokenize(text):\n",
    "    return text.lower().split()\n",
    "\n",
    "counter = Counter()\n",
    "for text in train_df[text_col]:\n",
    "    counter.update(tokenize(text))\n",
    "vocab = {word: idx+2 for idx, (word, _) in enumerate(counter.most_common())}\n",
    "vocab['<unk>'] = 0\n",
    "vocab['<pad>'] = 1\n",
    "\n",
    "# --- EMBEDDING ---\n",
    "from gensim.models.fasttext import load_facebook_model\n",
    "\n",
    "embedding_path = 'cc.hr.300.bin'\n",
    "ft_model = load_facebook_model(embedding_path)\n",
    "embeddings = ft_model.wv  \n",
    "\n",
    "embedding_dim = embeddings.vector_size\n",
    "embedding_matrix = np.zeros((len(vocab), embedding_dim))\n",
    "for word, idx in vocab.items():\n",
    "    if word in embeddings:\n",
    "        embedding_matrix[idx] = embeddings[word]\n",
    "    else:\n",
    "        embedding_matrix[idx] = np.random.normal(scale=0.6, size=(embedding_dim, ))\n",
    "\n",
    "# --- DATASET ---\n",
    "class TextDataset(Dataset):\n",
    "    def __init__(self, df, text_col, vocab, max_len=50):\n",
    "        self.texts = df[text_col].tolist()\n",
    "        self.labels = df['Label'].tolist()\n",
    "        self.vocab = vocab\n",
    "        self.max_len = max_len\n",
    "    def __len__(self):\n",
    "        return len(self.texts)\n",
    "    def __getitem__(self, idx):\n",
    "        tokens = tokenize(self.texts[idx])\n",
    "        ids = [self.vocab.get(token, self.vocab['<unk>']) for token in tokens][:self.max_len]\n",
    "        ids += [self.vocab['<pad>']] * (self.max_len - len(ids))\n",
    "        return torch.tensor(ids), torch.tensor(self.labels[idx])\n",
    "\n",
    "max_len = 50\n",
    "batch_size = 32\n",
    "train_ds = TextDataset(train_df, text_col, vocab, max_len)\n",
    "valid_ds = TextDataset(valid_df, text_col, vocab, max_len)\n",
    "\n",
    "test1_text_col = get_text_column(test1_df)\n",
    "test2_text_col = get_text_column(test2_df)\n",
    "test3_text_col = get_text_column(test3_df)\n",
    "\n",
    "test1_ds = TextDataset(test1_df, test1_text_col, vocab, max_len)\n",
    "test2_ds = TextDataset(test2_df, test2_text_col, vocab, max_len)\n",
    "test3_ds = TextDataset(test3_df, test3_text_col, vocab, max_len)\n",
    "\n",
    "train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)\n",
    "valid_dl = DataLoader(valid_ds, batch_size=batch_size)\n",
    "test1_dl = DataLoader(test1_ds, batch_size=batch_size)\n",
    "test2_dl = DataLoader(test2_ds, batch_size=batch_size)\n",
    "test3_dl = DataLoader(test3_ds, batch_size=batch_size)\n",
    "\n",
    "# --- MODELI ---\n",
    "class LSTMClassifier(nn.Module):\n",
    "    def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
    "        super().__init__()\n",
    "        num_embeddings, embedding_dim = embedding_matrix.shape\n",
    "        self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
    "        self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
    "        self.embedding.weight.requires_grad = False\n",
    "        self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        self.fc = nn.Linear(hidden_dim, num_classes)\n",
    "    def forward(self, x):\n",
    "        x = self.embedding(x)\n",
    "        _, (hidden, _) = self.lstm(x)\n",
    "        out = self.dropout(hidden[-1])\n",
    "        return self.fc(out)\n",
    "\n",
    "class GRUClassifier(nn.Module):\n",
    "    def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
    "        super().__init__()\n",
    "        num_embeddings, embedding_dim = embedding_matrix.shape\n",
    "        self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
    "        self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
    "        self.embedding.weight.requires_grad = False\n",
    "        self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        self.fc = nn.Linear(hidden_dim, num_classes)\n",
    "    def forward(self, x):\n",
    "        x = self.embedding(x)\n",
    "        _, hidden = self.gru(x)\n",
    "        out = self.dropout(hidden[-1])\n",
    "        return self.fc(out)\n",
    "\n",
    "class CNNClassifier(nn.Module):\n",
    "    def __init__(self, embedding_matrix, num_filters=128, kernel_sizes=[3,4,5], num_classes=3, dropout=0.8):\n",
    "        super().__init__()\n",
    "        num_embeddings, embedding_dim = embedding_matrix.shape\n",
    "        self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
    "        self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
    "        self.embedding.weight.requires_grad = False\n",
    "        self.convs = nn.ModuleList([\n",
    "            nn.Conv2d(1, num_filters, (k, embedding_dim)) for k in kernel_sizes\n",
    "        ])\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes)\n",
    "    def forward(self, x):\n",
    "        x = self.embedding(x)\n",
    "        x = x.unsqueeze(1)\n",
    "        x = [torch.relu(conv(x)).squeeze(3) for conv in self.convs]\n",
    "        x = [torch.max(pool, dim=2)[0] for pool in x]\n",
    "        x = torch.cat(x, dim=1)\n",
    "        x = self.dropout(x)\n",
    "        return self.fc(x)\n",
    "\n",
    "# --- TRENING I VALIDACIJA ---\n",
    "def train_epoch(model, dataloader, optimizer, criterion, device):\n",
    "    model.train()\n",
    "    total_loss = 0\n",
    "    for x, y in dataloader:\n",
    "        x, y = x.to(device), y.to(device)\n",
    "        optimizer.zero_grad()\n",
    "        logits = model(x)\n",
    "        loss = criterion(logits, y)\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        total_loss += loss.item()\n",
    "    return total_loss / len(dataloader)\n",
    "\n",
    "def eval_model(model, dataloader, device, criterion=None, return_loss=False):\n",
    "    model.eval()\n",
    "    preds, targets = [], []\n",
    "    total_loss = 0\n",
    "    with torch.no_grad():\n",
    "        for x, y in dataloader:\n",
    "            x, y = x.to(device), y.to(device)\n",
    "            logits = model(x)\n",
    "            if criterion and return_loss:\n",
    "                loss = criterion(logits, y)\n",
    "                total_loss += loss.item()\n",
    "            pred = logits.argmax(1).cpu().numpy()\n",
    "            preds.extend(pred)\n",
    "            targets.extend(y.cpu().numpy())\n",
    "    if return_loss and criterion:\n",
    "        return np.array(preds), np.array(targets), total_loss / len(dataloader)\n",
    "    return np.array(preds), np.array(targets)\n",
    "\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "\n",
    "def run_training(model_class, name, epochs=50, dropout=0.8, lr=5e-4):\n",
    "    print(f\"\\n{name} training...\")\n",
    "    model = model_class(embedding_matrix, dropout=dropout).to(device)\n",
    "    optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n",
    "    criterion = nn.CrossEntropyLoss()\n",
    "    for epoch in range(epochs):\n",
    "        train_loss = train_epoch(model, train_dl, optimizer, criterion, device)\n",
    "        _, _, val_loss = eval_model(model, valid_dl, device, criterion, return_loss=True)\n",
    "        if (epoch+1) % 5 == 0 or epoch == 0:\n",
    "            print(f\"{name} Epoch {epoch+1}: Train loss {train_loss:.4f} | Validation loss {val_loss:.4f}\")\n",
    "    results = {}\n",
    "    for test_name, test_dl in zip(\n",
    "        ['test1', 'test2', 'test3'],\n",
    "        [test1_dl, test2_dl, test3_dl]\n",
    "    ):\n",
    "        preds, targets = eval_model(model, test_dl, device)\n",
    "        report = classification_report(targets, preds, digits=4, output_dict=True, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
    "        matrix = confusion_matrix(targets, preds)\n",
    "        print(f\"\\n{name} on {test_name} Classification report:\\n\", classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"]))\n",
    "        print(f\"{name} on {test_name} Confusion matrix:\\n\", matrix)\n",
    "        results[test_name] = {\n",
    "            'precision': report['macro avg']['precision'],\n",
    "            'recall': report['macro avg']['recall'],\n",
    "            'f1': report['macro avg']['f1-score'],\n",
    "            'accuracy': report['accuracy'],\n",
    "            'confusion_matrix': matrix.tolist(),\n",
    "            'full_report': classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
    "        }\n",
    "    return results\n",
    "\n",
    "# --- POKRETANJE ---\n",
    "lstm_results = run_training(LSTMClassifier, \"LSTM\", epochs=50, dropout=0.8, lr=5e-4)\n",
    "gru_results = run_training(GRUClassifier, \"GRU\", epochs=50, dropout=0.8, lr=5e-4)\n",
    "cnn_results = run_training(CNNClassifier, \"CNN\", epochs=50, dropout=0.8, lr=5e-4)\n",
    "\n",
    "# --- SPREMANJE ---\n",
    "with open('results.md', 'w', encoding='utf-8') as f:\n",
    "    for model_name, results in [('LSTM', lstm_results), ('GRU', gru_results), ('CNN', cnn_results)]:\n",
    "        f.write(f\"## {model_name}\\n\\n\")\n",
    "        for test_name, res in results.items():\n",
    "            f.write(f\"### {test_name}\\n\")\n",
    "            f.write(f\"- Precision: {res['precision']:.4f}\\n\")\n",
    "            f.write(f\"- Recall: {res['recall']:.4f}\\n\")\n",
    "            f.write(f\"- F1: {res['f1']:.4f}\\n\")\n",
    "            f.write(f\"- Accuracy: {res['accuracy']:.4f}\\n\")\n",
    "            f.write(f\"- Confusion matrix: {res['confusion_matrix']}\\n\\n\")\n",
    "            f.write(f\"Full classification report:\\n{res['full_report']}\\n\\n\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}