josipabebic commited on
Commit
3b0691e
·
verified ·
1 Parent(s): e34b402

Delete code (test1,2,3).ipynb

Browse files
Files changed (1) hide show
  1. code (test1,2,3).ipynb +0 -548
code (test1,2,3).ipynb DELETED
@@ -1,548 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "6c9745be",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stderr",
11
- "output_type": "stream",
12
- "text": [
13
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/urllib3/__init__.py:35: NotOpenSSLWarning: urllib3 v2 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
14
- " warnings.warn(\n"
15
- ]
16
- },
17
- {
18
- "name": "stdout",
19
- "output_type": "stream",
20
- "text": [
21
- "\n",
22
- "LSTM training...\n",
23
- "LSTM Epoch 1: Train loss 0.9225 | Validation loss 0.9003\n",
24
- "LSTM Epoch 5: Train loss 0.9064 | Validation loss 0.8971\n",
25
- "LSTM Epoch 10: Train loss 0.9024 | Validation loss 0.8979\n",
26
- "LSTM Epoch 15: Train loss 0.9013 | Validation loss 0.8975\n",
27
- "LSTM Epoch 20: Train loss 0.9458 | Validation loss 0.9297\n",
28
- "LSTM Epoch 25: Train loss 0.9019 | Validation loss 0.9019\n",
29
- "LSTM Epoch 30: Train loss 0.9034 | Validation loss 0.9004\n",
30
- "LSTM Epoch 35: Train loss 0.9002 | Validation loss 0.9023\n",
31
- "LSTM Epoch 40: Train loss 0.8989 | Validation loss 0.9054\n",
32
- "LSTM Epoch 45: Train loss 0.8987 | Validation loss 0.9030\n",
33
- "LSTM Epoch 50: Train loss 0.8978 | Validation loss 0.9007\n"
34
- ]
35
- },
36
- {
37
- "name": "stderr",
38
- "output_type": "stream",
39
- "text": [
40
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
41
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
42
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
43
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
44
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
45
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
46
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
47
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
48
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
49
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
50
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
51
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
52
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
53
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
54
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
55
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
56
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
57
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
58
- ]
59
- },
60
- {
61
- "name": "stdout",
62
- "output_type": "stream",
63
- "text": [
64
- "\n",
65
- "LSTM on test1 Classification report:\n",
66
- " precision recall f1-score support\n",
67
- "\n",
68
- " positive 0.0000 0.0000 0.0000 165\n",
69
- " neutral 0.6585 1.0000 0.7941 430\n",
70
- " negative 0.0000 0.0000 0.0000 58\n",
71
- "\n",
72
- " accuracy 0.6585 653\n",
73
- " macro avg 0.2195 0.3333 0.2647 653\n",
74
- "weighted avg 0.4336 0.6585 0.5229 653\n",
75
- "\n",
76
- "LSTM on test1 Confusion matrix:\n",
77
- " [[ 0 165 0]\n",
78
- " [ 0 430 0]\n",
79
- " [ 0 58 0]]\n"
80
- ]
81
- },
82
- {
83
- "name": "stderr",
84
- "output_type": "stream",
85
- "text": [
86
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
87
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
88
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
89
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
90
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
91
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
92
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
93
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
94
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
95
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
96
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
97
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
98
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
99
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
100
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
101
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
102
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
103
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
104
- ]
105
- },
106
- {
107
- "name": "stdout",
108
- "output_type": "stream",
109
- "text": [
110
- "\n",
111
- "LSTM on test2 Classification report:\n",
112
- " precision recall f1-score support\n",
113
- "\n",
114
- " positive 0.0000 0.0000 0.0000 216\n",
115
- " neutral 0.5816 1.0000 0.7355 431\n",
116
- " negative 0.0000 0.0000 0.0000 94\n",
117
- "\n",
118
- " accuracy 0.5816 741\n",
119
- " macro avg 0.1939 0.3333 0.2452 741\n",
120
- "weighted avg 0.3383 0.5816 0.4278 741\n",
121
- "\n",
122
- "LSTM on test2 Confusion matrix:\n",
123
- " [[ 0 216 0]\n",
124
- " [ 0 431 0]\n",
125
- " [ 0 94 0]]\n"
126
- ]
127
- },
128
- {
129
- "name": "stderr",
130
- "output_type": "stream",
131
- "text": [
132
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
133
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
134
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
135
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
136
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
137
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
138
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
139
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
140
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
141
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
142
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
143
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
144
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
145
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
146
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
147
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
148
- "/Users/ivancarevic/Library/Python/3.9/lib/python/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
149
- " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
150
- ]
151
- },
152
- {
153
- "name": "stdout",
154
- "output_type": "stream",
155
- "text": [
156
- "\n",
157
- "LSTM on test3 Classification report:\n",
158
- " precision recall f1-score support\n",
159
- "\n",
160
- " positive 0.0000 0.0000 0.0000 267\n",
161
- " neutral 0.3317 1.0000 0.4981 263\n",
162
- " negative 0.0000 0.0000 0.0000 263\n",
163
- "\n",
164
- " accuracy 0.3317 793\n",
165
- " macro avg 0.1106 0.3333 0.1660 793\n",
166
- "weighted avg 0.1100 0.3317 0.1652 793\n",
167
- "\n",
168
- "LSTM on test3 Confusion matrix:\n",
169
- " [[ 0 267 0]\n",
170
- " [ 0 263 0]\n",
171
- " [ 0 263 0]]\n",
172
- "\n",
173
- "GRU training...\n",
174
- "GRU Epoch 1: Train loss 0.9163 | Validation loss 0.8981\n",
175
- "GRU Epoch 5: Train loss 0.9048 | Validation loss 0.8972\n",
176
- "GRU Epoch 10: Train loss 0.8214 | Validation loss 0.8023\n",
177
- "GRU Epoch 15: Train loss 0.7494 | Validation loss 0.7687\n",
178
- "GRU Epoch 20: Train loss 0.6789 | Validation loss 0.7580\n",
179
- "GRU Epoch 25: Train loss 0.5857 | Validation loss 0.8096\n",
180
- "GRU Epoch 30: Train loss 0.4784 | Validation loss 0.9778\n",
181
- "GRU Epoch 35: Train loss 0.3589 | Validation loss 1.1809\n",
182
- "GRU Epoch 40: Train loss 0.2612 | Validation loss 1.3460\n",
183
- "GRU Epoch 45: Train loss 0.1947 | Validation loss 1.4596\n",
184
- "GRU Epoch 50: Train loss 0.1336 | Validation loss 1.7536\n",
185
- "\n",
186
- "GRU on test1 Classification report:\n",
187
- " precision recall f1-score support\n",
188
- "\n",
189
- " positive 0.4322 0.5212 0.4725 165\n",
190
- " neutral 0.7457 0.7023 0.7234 430\n",
191
- " negative 0.1633 0.1379 0.1495 58\n",
192
- "\n",
193
- " accuracy 0.6064 653\n",
194
- " macro avg 0.4470 0.4538 0.4485 653\n",
195
- "weighted avg 0.6147 0.6064 0.6090 653\n",
196
- "\n",
197
- "GRU on test1 Confusion matrix:\n",
198
- " [[ 86 69 10]\n",
199
- " [ 97 302 31]\n",
200
- " [ 16 34 8]]\n",
201
- "\n",
202
- "GRU on test2 Classification report:\n",
203
- " precision recall f1-score support\n",
204
- "\n",
205
- " positive 0.8682 0.8843 0.8761 216\n",
206
- " neutral 0.9211 0.9211 0.9211 431\n",
207
- " negative 0.7778 0.7447 0.7609 94\n",
208
- "\n",
209
- " accuracy 0.8880 741\n",
210
- " macro avg 0.8557 0.8500 0.8527 741\n",
211
- "weighted avg 0.8875 0.8880 0.8877 741\n",
212
- "\n",
213
- "GRU on test2 Confusion matrix:\n",
214
- " [[191 19 6]\n",
215
- " [ 20 397 14]\n",
216
- " [ 9 15 70]]\n",
217
- "\n",
218
- "GRU on test3 Classification report:\n",
219
- " precision recall f1-score support\n",
220
- "\n",
221
- " positive 0.7510 0.7004 0.7248 267\n",
222
- " neutral 0.5524 0.9011 0.6850 263\n",
223
- " negative 0.7652 0.3346 0.4656 263\n",
224
- "\n",
225
- " accuracy 0.6456 793\n",
226
- " macro avg 0.6896 0.6454 0.6251 793\n",
227
- "weighted avg 0.6899 0.6456 0.6256 793\n",
228
- "\n",
229
- "GRU on test3 Confusion matrix:\n",
230
- " [[187 58 22]\n",
231
- " [ 21 237 5]\n",
232
- " [ 41 134 88]]\n",
233
- "\n",
234
- "CNN training...\n",
235
- "CNN Epoch 1: Train loss 0.9112 | Validation loss 0.8838\n",
236
- "CNN Epoch 5: Train loss 0.8149 | Validation loss 0.8114\n",
237
- "CNN Epoch 10: Train loss 0.7071 | Validation loss 0.7645\n",
238
- "CNN Epoch 15: Train loss 0.6159 | Validation loss 0.7597\n",
239
- "CNN Epoch 20: Train loss 0.5508 | Validation loss 0.7568\n",
240
- "CNN Epoch 25: Train loss 0.4648 | Validation loss 0.7638\n",
241
- "CNN Epoch 30: Train loss 0.4148 | Validation loss 0.7818\n",
242
- "CNN Epoch 35: Train loss 0.3572 | Validation loss 0.8047\n",
243
- "CNN Epoch 40: Train loss 0.3099 | Validation loss 0.8082\n",
244
- "CNN Epoch 45: Train loss 0.2741 | Validation loss 0.8595\n",
245
- "CNN Epoch 50: Train loss 0.2376 | Validation loss 0.9191\n",
246
- "\n",
247
- "CNN on test1 Classification report:\n",
248
- " precision recall f1-score support\n",
249
- "\n",
250
- " positive 0.4656 0.3697 0.4122 165\n",
251
- " neutral 0.7224 0.8535 0.7825 430\n",
252
- " negative 0.6429 0.1552 0.2500 58\n",
253
- "\n",
254
- " accuracy 0.6692 653\n",
255
- " macro avg 0.6103 0.4595 0.4816 653\n",
256
- "weighted avg 0.6505 0.6692 0.6416 653\n",
257
- "\n",
258
- "CNN on test1 Confusion matrix:\n",
259
- " [[ 61 103 1]\n",
260
- " [ 59 367 4]\n",
261
- " [ 11 38 9]]\n",
262
- "\n",
263
- "CNN on test2 Classification report:\n",
264
- " precision recall f1-score support\n",
265
- "\n",
266
- " positive 0.9000 0.8333 0.8654 216\n",
267
- " neutral 0.8936 0.9745 0.9323 431\n",
268
- " negative 0.9296 0.7021 0.8000 94\n",
269
- "\n",
270
- " accuracy 0.8988 741\n",
271
- " macro avg 0.9077 0.8366 0.8659 741\n",
272
- "weighted avg 0.9000 0.8988 0.8960 741\n",
273
- "\n",
274
- "CNN on test2 Confusion matrix:\n",
275
- " [[180 33 3]\n",
276
- " [ 9 420 2]\n",
277
- " [ 11 17 66]]\n",
278
- "\n",
279
- "CNN on test3 Classification report:\n",
280
- " precision recall f1-score support\n",
281
- "\n",
282
- " positive 0.8352 0.5693 0.6771 267\n",
283
- " neutral 0.4674 0.9810 0.6331 263\n",
284
- " negative 0.8983 0.2015 0.3292 263\n",
285
- "\n",
286
- " accuracy 0.5839 793\n",
287
- " macro avg 0.7336 0.5839 0.5465 793\n",
288
- "weighted avg 0.7341 0.5839 0.5471 793\n",
289
- "\n",
290
- "CNN on test3 Confusion matrix:\n",
291
- " [[152 109 6]\n",
292
- " [ 5 258 0]\n",
293
- " [ 25 185 53]]\n"
294
- ]
295
- }
296
- ],
297
- "source": [
298
- "# !pip install gensim scikit-learn pandas numpy torch tqdm\n",
299
- "\n",
300
- "import pandas as pd\n",
301
- "import numpy as np\n",
302
- "import torch\n",
303
- "import torch.nn as nn\n",
304
- "from torch.utils.data import Dataset, DataLoader\n",
305
- "from sklearn.metrics import classification_report, confusion_matrix\n",
306
- "from sklearn.model_selection import train_test_split\n",
307
- "from collections import Counter\n",
308
- "import gensim\n",
309
- "\n",
310
- "# --- UČITAVANJE I PODJELA PODATAKA ---\n",
311
- "full_df = pd.read_csv('TRAIN.csv')\n",
312
- "\n",
313
- "# Učitaj sve test skupove\n",
314
- "test1_df = pd.read_csv('test-1.csv')\n",
315
- "test2_df = pd.read_csv('test-2.csv')\n",
316
- "test3_df = pd.read_csv('test-3.csv')\n",
317
- "\n",
318
- "def get_text_column(df):\n",
319
- " for col in df.columns:\n",
320
- " if col.lower() in ['sentence', 'text']:\n",
321
- " return col\n",
322
- " raise ValueError(\"Nema stupca 'Sentence' ili 'Text'!\")\n",
323
- "\n",
324
- "text_col = get_text_column(full_df)\n",
325
- "\n",
326
- "# Stratified split: 95% train, 5% valid\n",
327
- "train_df, valid_df = train_test_split(full_df, test_size=0.05, stratify=full_df['Label'], random_state=42)\n",
328
- "\n",
329
- "# --- TOKENIZACIJA I VOKABULAR ---\n",
330
- "def tokenize(text):\n",
331
- " return text.lower().split()\n",
332
- "\n",
333
- "counter = Counter()\n",
334
- "for text in train_df[text_col]:\n",
335
- " counter.update(tokenize(text))\n",
336
- "vocab = {word: idx+2 for idx, (word, _) in enumerate(counter.most_common())}\n",
337
- "vocab['<unk>'] = 0\n",
338
- "vocab['<pad>'] = 1\n",
339
- "\n",
340
- "# --- EMBEDDING ---\n",
341
- "from gensim.models.fasttext import load_facebook_model\n",
342
- "\n",
343
- "embedding_path = 'cc.hr.300.bin'\n",
344
- "ft_model = load_facebook_model(embedding_path)\n",
345
- "embeddings = ft_model.wv \n",
346
- "\n",
347
- "embedding_dim = embeddings.vector_size\n",
348
- "embedding_matrix = np.zeros((len(vocab), embedding_dim))\n",
349
- "for word, idx in vocab.items():\n",
350
- " if word in embeddings:\n",
351
- " embedding_matrix[idx] = embeddings[word]\n",
352
- " else:\n",
353
- " embedding_matrix[idx] = np.random.normal(scale=0.6, size=(embedding_dim, ))\n",
354
- "\n",
355
- "# --- DATASET ---\n",
356
- "class TextDataset(Dataset):\n",
357
- " def __init__(self, df, text_col, vocab, max_len=50):\n",
358
- " self.texts = df[text_col].tolist()\n",
359
- " self.labels = df['Label'].tolist()\n",
360
- " self.vocab = vocab\n",
361
- " self.max_len = max_len\n",
362
- " def __len__(self):\n",
363
- " return len(self.texts)\n",
364
- " def __getitem__(self, idx):\n",
365
- " tokens = tokenize(self.texts[idx])\n",
366
- " ids = [self.vocab.get(token, self.vocab['<unk>']) for token in tokens][:self.max_len]\n",
367
- " ids += [self.vocab['<pad>']] * (self.max_len - len(ids))\n",
368
- " return torch.tensor(ids), torch.tensor(self.labels[idx])\n",
369
- "\n",
370
- "max_len = 50\n",
371
- "batch_size = 32\n",
372
- "train_ds = TextDataset(train_df, text_col, vocab, max_len)\n",
373
- "valid_ds = TextDataset(valid_df, text_col, vocab, max_len)\n",
374
- "\n",
375
- "test1_text_col = get_text_column(test1_df)\n",
376
- "test2_text_col = get_text_column(test2_df)\n",
377
- "test3_text_col = get_text_column(test3_df)\n",
378
- "\n",
379
- "test1_ds = TextDataset(test1_df, test1_text_col, vocab, max_len)\n",
380
- "test2_ds = TextDataset(test2_df, test2_text_col, vocab, max_len)\n",
381
- "test3_ds = TextDataset(test3_df, test3_text_col, vocab, max_len)\n",
382
- "\n",
383
- "train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)\n",
384
- "valid_dl = DataLoader(valid_ds, batch_size=batch_size)\n",
385
- "test1_dl = DataLoader(test1_ds, batch_size=batch_size)\n",
386
- "test2_dl = DataLoader(test2_ds, batch_size=batch_size)\n",
387
- "test3_dl = DataLoader(test3_ds, batch_size=batch_size)\n",
388
- "\n",
389
- "# --- MODELI ---\n",
390
- "class LSTMClassifier(nn.Module):\n",
391
- " def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
392
- " super().__init__()\n",
393
- " num_embeddings, embedding_dim = embedding_matrix.shape\n",
394
- " self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
395
- " self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
396
- " self.embedding.weight.requires_grad = False\n",
397
- " self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
398
- " self.dropout = nn.Dropout(dropout)\n",
399
- " self.fc = nn.Linear(hidden_dim, num_classes)\n",
400
- " def forward(self, x):\n",
401
- " x = self.embedding(x)\n",
402
- " _, (hidden, _) = self.lstm(x)\n",
403
- " out = self.dropout(hidden[-1])\n",
404
- " return self.fc(out)\n",
405
- "\n",
406
- "class GRUClassifier(nn.Module):\n",
407
- " def __init__(self, embedding_matrix, hidden_dim=256, num_classes=3, dropout=0.8):\n",
408
- " super().__init__()\n",
409
- " num_embeddings, embedding_dim = embedding_matrix.shape\n",
410
- " self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
411
- " self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
412
- " self.embedding.weight.requires_grad = False\n",
413
- " self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)\n",
414
- " self.dropout = nn.Dropout(dropout)\n",
415
- " self.fc = nn.Linear(hidden_dim, num_classes)\n",
416
- " def forward(self, x):\n",
417
- " x = self.embedding(x)\n",
418
- " _, hidden = self.gru(x)\n",
419
- " out = self.dropout(hidden[-1])\n",
420
- " return self.fc(out)\n",
421
- "\n",
422
- "class CNNClassifier(nn.Module):\n",
423
- " def __init__(self, embedding_matrix, num_filters=128, kernel_sizes=[3,4,5], num_classes=3, dropout=0.8):\n",
424
- " super().__init__()\n",
425
- " num_embeddings, embedding_dim = embedding_matrix.shape\n",
426
- " self.embedding = nn.Embedding(num_embeddings, embedding_dim)\n",
427
- " self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n",
428
- " self.embedding.weight.requires_grad = False\n",
429
- " self.convs = nn.ModuleList([\n",
430
- " nn.Conv2d(1, num_filters, (k, embedding_dim)) for k in kernel_sizes\n",
431
- " ])\n",
432
- " self.dropout = nn.Dropout(dropout)\n",
433
- " self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes)\n",
434
- " def forward(self, x):\n",
435
- " x = self.embedding(x)\n",
436
- " x = x.unsqueeze(1)\n",
437
- " x = [torch.relu(conv(x)).squeeze(3) for conv in self.convs]\n",
438
- " x = [torch.max(pool, dim=2)[0] for pool in x]\n",
439
- " x = torch.cat(x, dim=1)\n",
440
- " x = self.dropout(x)\n",
441
- " return self.fc(x)\n",
442
- "\n",
443
- "# --- TRENING I VALIDACIJA ---\n",
444
- "def train_epoch(model, dataloader, optimizer, criterion, device):\n",
445
- " model.train()\n",
446
- " total_loss = 0\n",
447
- " for x, y in dataloader:\n",
448
- " x, y = x.to(device), y.to(device)\n",
449
- " optimizer.zero_grad()\n",
450
- " logits = model(x)\n",
451
- " loss = criterion(logits, y)\n",
452
- " loss.backward()\n",
453
- " optimizer.step()\n",
454
- " total_loss += loss.item()\n",
455
- " return total_loss / len(dataloader)\n",
456
- "\n",
457
- "def eval_model(model, dataloader, device, criterion=None, return_loss=False):\n",
458
- " model.eval()\n",
459
- " preds, targets = [], []\n",
460
- " total_loss = 0\n",
461
- " with torch.no_grad():\n",
462
- " for x, y in dataloader:\n",
463
- " x, y = x.to(device), y.to(device)\n",
464
- " logits = model(x)\n",
465
- " if criterion and return_loss:\n",
466
- " loss = criterion(logits, y)\n",
467
- " total_loss += loss.item()\n",
468
- " pred = logits.argmax(1).cpu().numpy()\n",
469
- " preds.extend(pred)\n",
470
- " targets.extend(y.cpu().numpy())\n",
471
- " if return_loss and criterion:\n",
472
- " return np.array(preds), np.array(targets), total_loss / len(dataloader)\n",
473
- " return np.array(preds), np.array(targets)\n",
474
- "\n",
475
- "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
476
- "\n",
477
- "def run_training(model_class, name, epochs=50, dropout=0.8, lr=5e-4):\n",
478
- " print(f\"\\n{name} training...\")\n",
479
- " model = model_class(embedding_matrix, dropout=dropout).to(device)\n",
480
- " optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n",
481
- " criterion = nn.CrossEntropyLoss()\n",
482
- " for epoch in range(epochs):\n",
483
- " train_loss = train_epoch(model, train_dl, optimizer, criterion, device)\n",
484
- " _, _, val_loss = eval_model(model, valid_dl, device, criterion, return_loss=True)\n",
485
- " if (epoch+1) % 5 == 0 or epoch == 0:\n",
486
- " print(f\"{name} Epoch {epoch+1}: Train loss {train_loss:.4f} | Validation loss {val_loss:.4f}\")\n",
487
- " results = {}\n",
488
- " for test_name, test_dl in zip(\n",
489
- " ['test1', 'test2', 'test3'],\n",
490
- " [test1_dl, test2_dl, test3_dl]\n",
491
- " ):\n",
492
- " preds, targets = eval_model(model, test_dl, device)\n",
493
- " report = classification_report(targets, preds, digits=4, output_dict=True, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
494
- " matrix = confusion_matrix(targets, preds)\n",
495
- " print(f\"\\n{name} on {test_name} Classification report:\\n\", classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"]))\n",
496
- " print(f\"{name} on {test_name} Confusion matrix:\\n\", matrix)\n",
497
- " results[test_name] = {\n",
498
- " 'precision': report['macro avg']['precision'],\n",
499
- " 'recall': report['macro avg']['recall'],\n",
500
- " 'f1': report['macro avg']['f1-score'],\n",
501
- " 'accuracy': report['accuracy'],\n",
502
- " 'confusion_matrix': matrix.tolist(),\n",
503
- " 'full_report': classification_report(targets, preds, digits=4, target_names=[\"positive\", \"neutral\", \"negative\"])\n",
504
- " }\n",
505
- " return results\n",
506
- "\n",
507
- "# --- POKRETANJE ---\n",
508
- "lstm_results = run_training(LSTMClassifier, \"LSTM\", epochs=50, dropout=0.8, lr=5e-4)\n",
509
- "gru_results = run_training(GRUClassifier, \"GRU\", epochs=50, dropout=0.8, lr=5e-4)\n",
510
- "cnn_results = run_training(CNNClassifier, \"CNN\", epochs=50, dropout=0.8, lr=5e-4)\n",
511
- "\n",
512
- "# --- SPREMANJE ---\n",
513
- "with open('results.md', 'w', encoding='utf-8') as f:\n",
514
- " for model_name, results in [('LSTM', lstm_results), ('GRU', gru_results), ('CNN', cnn_results)]:\n",
515
- " f.write(f\"## {model_name}\\n\\n\")\n",
516
- " for test_name, res in results.items():\n",
517
- " f.write(f\"### {test_name}\\n\")\n",
518
- " f.write(f\"- Precision: {res['precision']:.4f}\\n\")\n",
519
- " f.write(f\"- Recall: {res['recall']:.4f}\\n\")\n",
520
- " f.write(f\"- F1: {res['f1']:.4f}\\n\")\n",
521
- " f.write(f\"- Accuracy: {res['accuracy']:.4f}\\n\")\n",
522
- " f.write(f\"- Confusion matrix: {res['confusion_matrix']}\\n\\n\")\n",
523
- " f.write(f\"Full classification report:\\n{res['full_report']}\\n\\n\")\n"
524
- ]
525
- }
526
- ],
527
- "metadata": {
528
- "kernelspec": {
529
- "display_name": "Python 3",
530
- "language": "python",
531
- "name": "python3"
532
- },
533
- "language_info": {
534
- "codemirror_mode": {
535
- "name": "ipython",
536
- "version": 3
537
- },
538
- "file_extension": ".py",
539
- "mimetype": "text/x-python",
540
- "name": "python",
541
- "nbconvert_exporter": "python",
542
- "pygments_lexer": "ipython3",
543
- "version": "3.9.6"
544
- }
545
- },
546
- "nbformat": 4,
547
- "nbformat_minor": 5
548
- }