Model description
LoRA text2image fine-tuning - NYUAD-ComNets/Ethnicity_Diversity_Model
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the NYUAD-ComNets/Ethnicity_Diversity_Data dataset. You can find some example images.
prompt: a photo of a {ethnicity} person, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus
How to use this model:
from diffusers import DiffusionPipeline
import torch
from compel import Compel, ReturnedEmbeddingsType
negative_prompt = "cartoon, anime, 3d, painting, b&w, low quality"
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("NYUAD-ComNets/Ethnicity_Diversity_Model", weight_name="pytorch_lora_weights.safetensors")
compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],truncate_long_prompts=False)
conditioning, pooled = compel("a photo of an asian person, looking at the camera, closeup headshot facing forward, ultra quality, sharp focus")
negative_conditioning, negative_pooled = compel(negative_prompt)
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
image = pipeline(prompt_embeds=conditioning, negative_prompt_embeds=negative_conditioning,
pooled_prompt_embeds=pooled, negative_pooled_prompt_embeds=negative_pooled,
num_inference_steps=40).images[0]
image.save('/../../x.jpg')
Examples
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Training data
NYUAD-ComNets/Ethnicity_Diversity_Data dataset was used to fine-tune stabilityai/stable-diffusion-xl-base-1.0
Configurations
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
BibTeX entry and citation info
@misc{ComNets,
url={[https://huggingface.co/NYUAD-ComNets/Ethnicity_Diversity_Model](https://huggingface.co/NYUAD-ComNets/Ethnicity_Diversity_Model)},
title={Ethnicity_Diversity_Model},
author={Nouar AlDahoul, Talal Rahwan, Yasir Zaki}
}
- Downloads last month
- 3
Model tree for NYUAD-ComNets/Ethnicity_Diversity_Model
Base model
stabilityai/stable-diffusion-xl-base-1.0