videomae-base-finetuned-ESBD
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6116
- Accuracy: 0.3095
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4599 | 0.09 | 27 | 1.3408 | 0.3333 |
1.217 | 1.09 | 54 | 1.3656 | 0.3571 |
1.2652 | 2.09 | 81 | 1.2593 | 0.3095 |
0.797 | 3.09 | 108 | 0.9102 | 0.5952 |
1.2926 | 4.09 | 135 | 0.9243 | 0.6429 |
0.4508 | 5.09 | 162 | 0.9276 | 0.6905 |
0.3649 | 6.09 | 189 | 0.6216 | 0.7857 |
0.1679 | 7.09 | 216 | 1.1307 | 0.6667 |
0.1277 | 8.09 | 243 | 0.9728 | 0.6667 |
0.0665 | 9.09 | 270 | 0.8415 | 0.7619 |
0.0148 | 10.09 | 297 | 0.7911 | 0.7857 |
0.0136 | 11.01 | 300 | 0.7950 | 0.7857 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 54
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.