|
--- |
|
license: gpl-3.0 |
|
datasets: |
|
- agentlans/high-quality-english-sentences |
|
language: |
|
- en |
|
base_model: |
|
- unsloth/Qwen3-0.6B-Base |
|
--- |
|
|
|
# Qwen3 0.6B Text FIM |
|
This is a model trained to do fill-in-the-middle (FIM) with text.\ |
|
This model is used in the [browser-autocomplete](https://github.com/OleFranz/browser-autocomplete) extension.\ |
|
It was fine tuned using Unsloth, code [here](https://github.com/OleFranz/qwen3-fim-finetune). |
|
|
|
## Example code |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("OleFranz/Qwen3-0.6B-Text-FIM") |
|
tokenizer = AutoTokenizer.from_pretrained("OleFranz/Qwen3-0.6B-Text-FIM") |
|
|
|
prefix = "do you k" |
|
suffix = " the current time?" |
|
prompt = f"<|fim_prefix|>{prefix}<|fim_suffix|>{suffix}<|fim_middle|>" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=64, |
|
do_sample=True, |
|
temperature=0.1, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
middle = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) |
|
|
|
GREEN = "\x1b[32m" |
|
RESET = "\x1b[0m" |
|
|
|
print(f"Completed text:\n{prefix}{GREEN}{middle}{RESET}{suffix}\n--------------") |
|
|
|
raw = tokenizer.decode(outputs[0]) |
|
|
|
print(f"\nRaw:\n{raw!r}\n---") |
|
``` |