Add more descriptive tags to model card

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +75 -33
README.md CHANGED
@@ -1,18 +1,24 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternVL3_5-4B-Pretrained
7
- base_model_relation: finetune
8
  datasets:
9
- - OpenGVLab/MMPR-v1.2
10
- - OpenGVLab/MMPR-Tiny
11
  language:
12
- - multilingual
 
 
 
13
  tags:
14
- - internvl
15
- - custom_code
 
 
 
 
 
 
 
16
  ---
17
 
18
  # InternVL3_5-4B-Instruct
@@ -27,7 +33,7 @@ tags:
27
 
28
  ## Introduction
29
 
30
- We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
 
32
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
 
@@ -141,7 +147,7 @@ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolu
141
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
- Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
 
146
 
147
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
@@ -233,7 +239,7 @@ $$
233
  \Bigg],
234
  $$
235
 
236
- where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
237
 
238
 
239
  `Router training`:
@@ -529,40 +535,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
529
  # pure-text conversation (纯文本对话)
530
  question = 'Hello, who are you?'
531
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
- print(f'User: {question}\nAssistant: {response}')
 
533
 
534
  question = 'Can you tell me a story?'
535
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
536
- print(f'User: {question}\nAssistant: {response}')
 
537
 
538
  # single-image single-round conversation (单图单轮对话)
539
- question = '<image>\nPlease describe the image shortly.'
 
540
  response = model.chat(tokenizer, pixel_values, question, generation_config)
541
- print(f'User: {question}\nAssistant: {response}')
 
542
 
543
  # single-image multi-round conversation (单图多轮对话)
544
- question = '<image>\nPlease describe the image in detail.'
 
545
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
546
- print(f'User: {question}\nAssistant: {response}')
 
547
 
548
  question = 'Please write a poem according to the image.'
549
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
550
- print(f'User: {question}\nAssistant: {response}')
 
551
 
552
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
553
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
554
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
555
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
556
 
557
- question = '<image>\nDescribe the two images in detail.'
 
558
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
559
  history=None, return_history=True)
560
- print(f'User: {question}\nAssistant: {response}')
 
561
 
562
  question = 'What are the similarities and differences between these two images.'
563
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
564
  history=history, return_history=True)
565
- print(f'User: {question}\nAssistant: {response}')
 
566
 
567
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
568
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -570,17 +586,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
570
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
571
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
572
 
573
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
 
 
574
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
575
  num_patches_list=num_patches_list,
576
  history=None, return_history=True)
577
- print(f'User: {question}\nAssistant: {response}')
 
578
 
579
  question = 'What are the similarities and differences between these two images.'
580
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
581
  num_patches_list=num_patches_list,
582
  history=history, return_history=True)
583
- print(f'User: {question}\nAssistant: {response}')
 
584
 
585
  # batch inference, single image per sample (单图批处理)
586
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -588,13 +608,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
588
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
589
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
 
591
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
 
592
  responses = model.batch_chat(tokenizer, pixel_values,
593
  num_patches_list=num_patches_list,
594
  questions=questions,
595
  generation_config=generation_config)
596
  for question, response in zip(questions, responses):
597
- print(f'User: {question}\nAssistant: {response}')
 
598
 
599
  # video multi-round conversation (视频多轮对话)
600
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
@@ -632,17 +654,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
632
  video_path = './examples/red-panda.mp4'
633
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
634
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
635
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
 
636
  question = video_prefix + 'What is the red panda doing?'
637
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
 
 
 
 
638
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
639
  num_patches_list=num_patches_list, history=None, return_history=True)
640
- print(f'User: {question}\nAssistant: {response}')
 
641
 
642
  question = 'Describe this video in detail.'
643
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
644
  num_patches_list=num_patches_list, history=history, return_history=True)
645
- print(f'User: {question}\nAssistant: {response}')
 
646
  ```
647
 
648
  #### Streaming Output
@@ -726,7 +755,9 @@ image_urls=[
726
 
727
  images = [load_image(img_url) for img_url in image_urls]
728
  # Numbering images improves multi-image conversations
729
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
730
  print(response.text)
731
  ```
732
 
@@ -829,3 +860,14 @@ If you find this project useful in your research, please consider citing:
829
  year={2025}
830
  }
831
  ```
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL3_5-4B-Pretrained
 
4
  datasets:
5
+ - OpenGVLab/MMPR-v1.2
6
+ - OpenGVLab/MMPR-Tiny
7
  language:
8
+ - multilingual
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: image-text-to-text
12
  tags:
13
+ - internvl
14
+ - custom_code
15
+ - multimodal
16
+ - vision-language-model
17
+ - reasoning
18
+ - agentic
19
+ - multilingual
20
+ - qwen
21
+ base_model_relation: finetune
22
  ---
23
 
24
  # InternVL3_5-4B-Instruct
 
33
 
34
  ## Introduction
35
 
36
+ We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
37
 
38
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
39
 
 
147
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
148
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
149
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
150
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50% while maintaining nearly 100% of the performance of InternVL3.5.
151
 
152
 
153
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
 
239
  \Bigg],
240
  $$
241
 
242
+ where \\(\mathrm{KL}\\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
243
 
244
 
245
  `Router training`:
 
535
  # pure-text conversation (纯文本对话)
536
  question = 'Hello, who are you?'
537
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
538
+ print(f'User: {question}
539
+ Assistant: {response}')
540
 
541
  question = 'Can you tell me a story?'
542
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
543
+ print(f'User: {question}
544
+ Assistant: {response}')
545
 
546
  # single-image single-round conversation (单图单轮对话)
547
+ question = '<image>
548
+ Please describe the image shortly.'
549
  response = model.chat(tokenizer, pixel_values, question, generation_config)
550
+ print(f'User: {question}
551
+ Assistant: {response}')
552
 
553
  # single-image multi-round conversation (单图多轮对话)
554
+ question = '<image>
555
+ Please describe the image in detail.'
556
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
557
+ print(f'User: {question}
558
+ Assistant: {response}')
559
 
560
  question = 'Please write a poem according to the image.'
561
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
562
+ print(f'User: {question}
563
+ Assistant: {response}')
564
 
565
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
566
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
567
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
568
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
569
 
570
+ question = '<image>
571
+ Describe the two images in detail.'
572
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
573
  history=None, return_history=True)
574
+ print(f'User: {question}
575
+ Assistant: {response}')
576
 
577
  question = 'What are the similarities and differences between these two images.'
578
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
579
  history=history, return_history=True)
580
+ print(f'User: {question}
581
+ Assistant: {response}')
582
 
583
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
584
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
586
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
587
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
588
 
589
+ question = 'Image-1: <image>
590
+ Image-2: <image>
591
+ Describe the two images in detail.'
592
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
593
  num_patches_list=num_patches_list,
594
  history=None, return_history=True)
595
+ print(f'User: {question}
596
+ Assistant: {response}')
597
 
598
  question = 'What are the similarities and differences between these two images.'
599
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
600
  num_patches_list=num_patches_list,
601
  history=history, return_history=True)
602
+ print(f'User: {question}
603
+ Assistant: {response}')
604
 
605
  # batch inference, single image per sample (单图批处理)
606
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
608
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
609
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
610
 
611
+ questions = ['<image>
612
+ Describe the image in detail.'] * len(num_patches_list)
613
  responses = model.batch_chat(tokenizer, pixel_values,
614
  num_patches_list=num_patches_list,
615
  questions=questions,
616
  generation_config=generation_config)
617
  for question, response in zip(questions, responses):
618
+ print(f'User: {question}
619
+ Assistant: {response}')
620
 
621
  # video multi-round conversation (视频多轮对话)
622
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
 
654
  video_path = './examples/red-panda.mp4'
655
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
656
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
657
+ video_prefix = ''.join([f'Frame{i+1}: <image>
658
+ ' for i in range(len(num_patches_list))])
659
  question = video_prefix + 'What is the red panda doing?'
660
+ # Frame1: <image>
661
+ Frame2: <image>
662
+ ...
663
+ Frame8: <image>
664
+ {question}
665
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
666
  num_patches_list=num_patches_list, history=None, return_history=True)
667
+ print(f'User: {question}
668
+ Assistant: {response}')
669
 
670
  question = 'Describe this video in detail.'
671
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
672
  num_patches_list=num_patches_list, history=history, return_history=True)
673
+ print(f'User: {question}
674
+ Assistant: {response}')
675
  ```
676
 
677
  #### Streaming Output
 
755
 
756
  images = [load_image(img_url) for img_url in image_urls]
757
  # Numbering images improves multi-image conversations
758
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
759
+ Image-2: {IMAGE_TOKEN}
760
+ describe these two images', images))
761
  print(response.text)
762
  ```
763
 
 
860
  year={2025}
861
  }
862
  ```
863
+
864
+
865
+ ## Acknowledgement
866
+
867
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
868
+
869
+ ______________________________________________________________________
870
+
871
+ Scan the following QR Code, join our WeChat group.
872
+
873
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>