Image-Text-to-Text
Safetensors
English
llava_llama
medical

PULSE-7B

Dataset for paper "Teach Multimodal LLMs to Comprehend Electrocardiographic Images".

🌐 Project Page: https://aimedlab.github.io/PULSE/

πŸ“„ Paper: https://arxiv.org/abs/2410.19008

πŸ§‘β€πŸ’» Code: https://github.com/AIMedLab/PULSE

πŸ‘©β€βš•οΈ ECGInstruct(Training): https://huggingface.co/datasets/PULSE-ECG/ECGInstruct

βš–οΈ ECGBench(Testing): https://huggingface.co/datasets/PULSE-ECG/ECGBench

Introduction

We introduce PULSE-7B, a multimodal large language model (MLLM) specifically designed for ECG image interpretation. Leveraging the comprehensive ECGInstruct dataset, which contains over one million instruction-tuning samples, PULSE-7B is tailored to handle a wide range of ECG-related tasks drawn from diverse data sources. While traditional ECG interpretation methods are often constrained by their reliance on raw physiological signals and limited to specific cardiac conditions, PULSE-7B addresses these limitations by enabling robust interpretation of both printed and digital ECG images, making it especially valuable in resource-limited settings where access to raw signals may be restricted. In conjunction with the introduction of ECGBench, a benchmark that includes four key tasks spanning nine datasets, our experiments demonstrate that PULSE-7B establishes new state-of-the-art performance, surpassing general MLLMs with an average accuracy improvement of 15% to 30%. This model showcases the potential to significantly advance ECG image interpretation, providing a more versatile and accurate tool for clinical practice.

Overall performance of PULSE-7B on ECGBench

image/jpeg

Model Performance

In-domain

image/jpeg

Out-of-domain

image/jpeg

Case Study

ECG Image ECG Image ECG Image

Citation

If you find this work helpful, please cite our paper:

@article{liu2024teach,
  title={Teach Multimodal LLMs to Comprehend Electrocardiographic Images},
  author={Ruoqi Liu, Yuelin Bai, Xiang Yue, Ping Zhang},
  journal={arXiv preprint arXiv:2410.19008},
  year={2024}
}
Downloads last month
9,341
Safetensors
Model size
7.06B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train PULSE-ECG/PULSE-7B

Spaces using PULSE-ECG/PULSE-7B 2

Collection including PULSE-ECG/PULSE-7B