ComplexityDiT - Diffusion Transformer with INL Dynamics
Diffusion Transformer enhanced with PID-style dynamics control for smoother denoising.
Architecture
Input -> [Attention -> MLP -> Dynamics] x 12 -> Output
Core equations:
- Attention:
softmax(QK^T/sqrt(d)) * V - MLP:
W2 * GELU(W1 * x) - Dynamics:
h += dt * gate * (alpha*v - beta*(h - mu))
Model Details
| Parameter | Value |
|---|---|
| Architecture | ComplexityDiT-S |
| Parameters | 114M |
| Layers | 12 |
| Hidden dim | 384 |
| Heads | 6 |
| Experts | 4 |
| Dynamics | Enabled |
Training
- Dataset: huggan/wikiart
- Steps: 20,000
- Batch size: 16
- Mixed precision: FP16
Usage
from safetensors.torch import load_file
from complexity_diffusion import ComplexityDiT
# Load model
model = ComplexityDiT.from_config('S', context_dim=768)
state_dict = load_file('model.safetensors')
model.load_state_dict(state_dict)
INL Dynamics
The dynamics layer adds robotics-grade control to stabilize denoising trajectories:
mu- learnable equilibrium (target position)alpha- inertia (momentum)beta- correction strength (spring constant)gate- amplitude control
This creates smooth, stable trajectories like a PID controller guiding the model toward clean images.
Links
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support