|
import math
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BertModel,BertConfig
|
|
import torch.nn.functional as F
|
|
from huggingface_hub import PyTorchModelHubMixin
|
|
import pickle
|
|
|
|
class Embeddings(nn.Module):
|
|
def __init__(self, n_token, d_model):
|
|
super().__init__()
|
|
self.lut = nn.Embedding(n_token, d_model)
|
|
self.d_model = d_model
|
|
|
|
def forward(self, x):
|
|
return self.lut(x) * math.sqrt(self.d_model)
|
|
|
|
|
|
|
|
class MidiBert(nn.Module):
|
|
def __init__(self, bertConfig, e2w, w2e):
|
|
super().__init__()
|
|
|
|
self.bert = BertModel(bertConfig)
|
|
bertConfig.d_model = bertConfig.hidden_size
|
|
self.hidden_size = bertConfig.hidden_size
|
|
self.bertConfig = bertConfig
|
|
|
|
self.n_tokens = []
|
|
self.classes = ['Bar', 'Position', 'Instrument', 'Pitch', 'Duration', 'Velocity', 'TimeSig', 'Tempo']
|
|
for key in self.classes:
|
|
self.n_tokens.append(len(e2w[key]))
|
|
self.emb_sizes = [256] * 8
|
|
self.e2w = e2w
|
|
self.w2e = w2e
|
|
|
|
|
|
self.bar_pad_word = self.e2w['Bar']['Bar <PAD>']
|
|
self.mask_word_np = np.array([self.e2w[etype]['%s <MASK>' % etype] for etype in self.classes], dtype=np.longlong)
|
|
self.pad_word_np = np.array([self.e2w[etype]['%s <PAD>' % etype] for etype in self.classes], dtype=np.longlong)
|
|
self.sos_word_np = np.array([self.e2w[etype]['%s <SOS>' % etype] for etype in self.classes], dtype=np.longlong)
|
|
self.eos_word_np = np.array([self.e2w[etype]['%s <EOS>' % etype] for etype in self.classes], dtype=np.longlong)
|
|
|
|
|
|
self.word_emb = []
|
|
|
|
for i, key in enumerate(self.classes):
|
|
self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i]))
|
|
|
|
self.word_emb = nn.ModuleList(self.word_emb)
|
|
|
|
|
|
|
|
self.in_linear = nn.Linear(int(np.sum(self.emb_sizes)), bertConfig.d_model)
|
|
|
|
self.attention_linear = nn.Sequential(
|
|
nn.Linear(int(np.sum(self.emb_sizes)), np.sum(self.emb_sizes) //2),
|
|
nn.ReLU(),
|
|
nn.Linear(np.sum(self.emb_sizes) // 2, np.sum(self.emb_sizes) // 2),
|
|
nn.ReLU(),
|
|
nn.Linear(np.sum(self.emb_sizes) // 2, int(np.sum(self.emb_sizes))),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
|
|
def forward(self, input_ids, attn_mask=None, output_hidden_states=True, x=None):
|
|
|
|
embs = []
|
|
for i, key in enumerate(self.classes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embs.append(self.word_emb[i](input_ids[..., i]))
|
|
embs = torch.cat([*embs], dim=-1)
|
|
|
|
|
|
|
|
emb_linear = self.in_linear(embs)
|
|
|
|
|
|
y = self.bert(inputs_embeds=emb_linear, attention_mask=attn_mask, output_hidden_states=output_hidden_states)
|
|
|
|
return y
|
|
|
|
def get_rand_tok(self):
|
|
rand=[0]*8
|
|
for i in range(8):
|
|
rand[i]=random.choice(range(self.n_tokens[i]))
|
|
return np.array(rand)
|
|
|
|
def tw_attention(self,x):
|
|
weight = self.attention_linear(x)
|
|
return x * weight
|
|
|
|
|
|
class MidiBertLM(nn.Module):
|
|
def __init__(self, midibert: MidiBert):
|
|
super().__init__()
|
|
|
|
self.midibert = midibert
|
|
self.mask_lm = MLM(self.midibert.e2w, self.midibert.n_tokens, self.midibert.hidden_size)
|
|
|
|
def forward(self, x, attn):
|
|
x = self.midibert(x, attn)
|
|
return self.mask_lm(x)
|
|
|
|
|
|
class MLM(nn.Module):
|
|
def __init__(self, e2w, n_tokens, hidden_size):
|
|
super().__init__()
|
|
|
|
|
|
self.proj = []
|
|
for i, etype in enumerate(e2w):
|
|
self.proj.append(nn.Linear(hidden_size, n_tokens[i]))
|
|
self.proj = nn.ModuleList(self.proj)
|
|
|
|
self.e2w = e2w
|
|
|
|
def forward(self, y):
|
|
|
|
y = y.hidden_states[-1]
|
|
|
|
|
|
ys = []
|
|
for i, etype in enumerate(self.e2w):
|
|
ys.append(self.proj[i](y))
|
|
return ys
|
|
|
|
class Masker(nn.Module):
|
|
def __init__(self, midibert, hs):
|
|
super().__init__()
|
|
self.midibert = midibert
|
|
self.linear = nn.Sequential(
|
|
nn.Dropout(0.1),
|
|
nn.Linear(hs, 256),
|
|
nn.ReLU(),
|
|
nn.Linear(256, 1),
|
|
nn.Sigmoid()
|
|
)
|
|
|
|
def forward(self, y, attn, layer=-1):
|
|
|
|
y = self.midibert(y, attn, output_hidden_states=True)
|
|
|
|
y = y.hidden_states[layer]
|
|
y = self.linear(y)
|
|
return y.squeeze()
|
|
|
|
|
|
class TokenClassification(nn.Module):
|
|
def __init__(self, midibert, class_num, hs):
|
|
super().__init__()
|
|
|
|
self.midibert = midibert
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(0.1),
|
|
nn.Linear(hs, 256),
|
|
nn.ReLU(),
|
|
nn.Linear(256, class_num)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, y, attn, layer=-1):
|
|
|
|
y = self.midibert(y, attn, output_hidden_states=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = y.hidden_states[layer]
|
|
return self.classifier(y)
|
|
|
|
class SequenceClassification(nn.Module):
|
|
def __init__(self, midibert, class_num, hs, da=128, r=4):
|
|
super(SequenceClassification, self).__init__()
|
|
self.midibert = midibert
|
|
self.attention = SelfAttention(hs, da, r)
|
|
self.classifier = nn.Sequential(
|
|
nn.Linear(hs * r, 256),
|
|
nn.ReLU(),
|
|
nn.Linear(256, class_num)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, attn, layer=-1):
|
|
x = self.midibert(x, attn, output_hidden_states=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x.hidden_states[layer]
|
|
attn_mat = self.attention(x)
|
|
m = torch.bmm(attn_mat, x)
|
|
flatten = m.view(m.size()[0], -1)
|
|
res = self.classifier(flatten)
|
|
return res
|
|
|
|
class SelfAttention(nn.Module):
|
|
def __init__(self, input_dim, da, r):
|
|
'''
|
|
Args:
|
|
input_dim (int): batch, seq, input_dim
|
|
da (int): number of features in hidden layer from self-attn
|
|
r (int): number of aspects of self-attn
|
|
'''
|
|
super(SelfAttention, self).__init__()
|
|
self.ws1 = nn.Linear(input_dim, da, bias=False)
|
|
self.ws2 = nn.Linear(da, r, bias=False)
|
|
|
|
def forward(self, h):
|
|
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
|
|
attn_mat = attn_mat.permute(0, 2, 1)
|
|
return attn_mat
|
|
|
|
|
|
class Adversarial_MidiBERT(
|
|
nn.Module,
|
|
PyTorchModelHubMixin
|
|
):
|
|
def __init__(self, max_position_embeddings=1024, hidden_size=768):
|
|
super().__init__()
|
|
with open("./Octuple.pkl", 'rb') as f:
|
|
self.e2w, self.w2e = pickle.load(f)
|
|
self.config = BertConfig(max_position_embeddings=max_position_embeddings, position_embedding_type='relative_key_query', hidden_size=hidden_size)
|
|
self.model = MidiBert(bertConfig=self.config, e2w=self.e2w, w2e=self.w2e)
|
|
|
|
|
|
def forward(self, x, attn_mask=None, output_hidden_states=True):
|
|
return self.model(x,attn_mask,output_hidden_states)
|
|
|
|
|