Dataset Information

We introduce an omnidirectional and automatic RAG benchmark, OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including:

  1. a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios;
  2. a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47% acceptance ratio in human evaluations on generated instances;
  3. a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline;
  4. robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator.

Useful Links: 📝 Paper • 🤗 Hugging Face • 🧩 Github

We have trained two models from Qwen2.5-7B by the lora strategy and human-annotation labels to implement model-based evaluation.Note that the evaluator of hallucination is different from other four.

We provide the evaluator for the hallucination metric in this repo.

🌟 Citation

@misc{wang2024omnievalomnidirectionalautomaticrag,
      title={OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain}, 
      author={Shuting Wang and Jiejun Tan and Zhicheng Dou and Ji-Rong Wen},
      year={2024},
      eprint={2412.13018},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.13018}, 
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for RUC-NLPIR/OmniEval-HallucinationEvaluator

Base model

Qwen/Qwen2.5-7B
Finetuned
(495)
this model

Collection including RUC-NLPIR/OmniEval-HallucinationEvaluator