|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
--- |
|
|
|
# Meta-Llama-3-70B-Instruct-FP8-KV |
|
|
|
## Model Overview |
|
Meta-Llama-3-70B-Instruct quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0. |
|
This model checkpoint also includes per-tensor scales for FP8 quantized KV Cache, accessed through the `--kv-cache-dtype fp8` argument in vLLM. |
|
|
|
```python |
|
from vllm import LLM |
|
model = LLM(model="neuralmagic/Meta-Llama-3-70B-Instruct-FP8-KV", kv_cache_dtype="fp8") |
|
result = model.generate("Hello, my name is") |
|
``` |
|
|
|
## Usage and Creation |
|
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8). |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig |
|
|
|
pretrained_model_dir = "meta-llama/Meta-Llama-3-70B-Instruct" |
|
quantized_model_dir = "Meta-Llama-3-70B-Instruct-FP8-KV" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft") |
|
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds] |
|
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda") |
|
|
|
quantize_config = BaseQuantizeConfig( |
|
quant_method="fp8", |
|
activation_scheme="static", |
|
ignore_patterns=["re:.*lm_head"], |
|
kv_cache_quant_targets=("k_proj", "v_proj"), |
|
) |
|
|
|
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config) |
|
model.quantize(examples) |
|
model.save_quantized(quantized_model_dir) |
|
``` |
|
|
|
## Evaluation |
|
|
|
### Open LLM Leaderboard evaluation scores |
|
|
|
Model evaluation results obtained via [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). |
|
|
|
| Benchmark | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-FP8 | Meta-Llama-3-70B-Instruct-FP8-KV<br>(this model) | |
|
| :-------------------------------------------------------: | :-----------------------: | :---------------------------: | :----------------------------------------------: | |
|
| [ARC-c](https://arxiv.org/abs/1911.01547)<br> 25-shot | 72.69 | 72.61 | 72.57 | |
|
| [HellaSwag](https://arxiv.org/abs/1905.07830)<br> 10-shot | 85.50 | 85.41 | 85.32 | |
|
| [MMLU](https://arxiv.org/abs/2009.03300)<br> 5-shot | 80.18 | 80.06 | 79.69 | |
|
| [TruthfulQA](https://arxiv.org/abs/2109.07958)<br> 0-shot | 62.90 | 62.73 | 61.92 | |
|
| [WinoGrande](https://arxiv.org/abs/1907.10641)<br> 5-shot | 83.34 | 83.03 | 83.66 | |
|
| [GSM8K](https://arxiv.org/abs/2110.14168)<br> 5-shot | 92.49 | 91.12 | 90.83 | |
|
| **Average<br>Accuracy** | **79.51** | **79.16** | **79.00** | |
|
| **Recovery** | **100%** | **99.55%** | **99.36%** | |
|
|