YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
online-dpo-qwen2-4 - GGUF
- Model creator: https://huggingface.co/qgallouedec/
- Original model: https://huggingface.co/qgallouedec/online-dpo-qwen2-4/
Name | Quant method | Size |
---|---|---|
online-dpo-qwen2-4.Q2_K.gguf | Q2_K | 0.32GB |
online-dpo-qwen2-4.IQ3_XS.gguf | IQ3_XS | 0.32GB |
online-dpo-qwen2-4.IQ3_S.gguf | IQ3_S | 0.32GB |
online-dpo-qwen2-4.Q3_K_S.gguf | Q3_K_S | 0.32GB |
online-dpo-qwen2-4.IQ3_M.gguf | IQ3_M | 0.32GB |
online-dpo-qwen2-4.Q3_K.gguf | Q3_K | 0.33GB |
online-dpo-qwen2-4.Q3_K_M.gguf | Q3_K_M | 0.33GB |
online-dpo-qwen2-4.Q3_K_L.gguf | Q3_K_L | 0.34GB |
online-dpo-qwen2-4.IQ4_XS.gguf | IQ4_XS | 0.33GB |
online-dpo-qwen2-4.Q4_0.gguf | Q4_0 | 0.33GB |
online-dpo-qwen2-4.IQ4_NL.gguf | IQ4_NL | 0.33GB |
online-dpo-qwen2-4.Q4_K_S.gguf | Q4_K_S | 0.36GB |
online-dpo-qwen2-4.Q4_K.gguf | Q4_K | 0.37GB |
online-dpo-qwen2-4.Q4_K_M.gguf | Q4_K_M | 0.37GB |
online-dpo-qwen2-4.Q4_1.gguf | Q4_1 | 0.35GB |
online-dpo-qwen2-4.Q5_0.gguf | Q5_0 | 0.37GB |
online-dpo-qwen2-4.Q5_K_S.gguf | Q5_K_S | 0.38GB |
online-dpo-qwen2-4.Q5_K.gguf | Q5_K | 0.39GB |
online-dpo-qwen2-4.Q5_K_M.gguf | Q5_K_M | 0.39GB |
online-dpo-qwen2-4.Q5_1.gguf | Q5_1 | 0.39GB |
online-dpo-qwen2-4.Q6_K.gguf | Q6_K | 0.47GB |
online-dpo-qwen2-4.Q8_0.gguf | Q8_0 | 0.49GB |
Original model description:
base_model: Qwen/Qwen2-0.5B-Instruct datasets: trl-lib/ultrafeedback-prompt library_name: transformers model_name: online-dpo-qwen2-4 tags: - trl - generated_from_trainer - online-dpo licence: license
Model Card for online-dpo-qwen2-4
This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the trl-lib/ultrafeedback-prompt dataset. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="qgallouedec/online-dpo-qwen2-4", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=500)[0]
print(output["generated_text"][1]["content"])
Training procedure
This model was trained with Online DPO, a method introduced in Direct Language Model Alignment from Online AI Feedback.
Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.45.0.dev0
- Pytorch: 2.4.1
- Datasets: 3.0.0
- Tokenizers: 0.19.1
- Downloads last month
- 396
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.