YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
qsaf_best - GGUF
- Model creator: https://huggingface.co/ryusangwon/
- Original model: https://huggingface.co/ryusangwon/qsaf_best/
Name | Quant method | Size |
---|---|---|
qsaf_best.Q2_K.gguf | Q2_K | 0.54GB |
qsaf_best.IQ3_XS.gguf | IQ3_XS | 0.58GB |
qsaf_best.IQ3_S.gguf | IQ3_S | 0.6GB |
qsaf_best.Q3_K_S.gguf | Q3_K_S | 0.6GB |
qsaf_best.IQ3_M.gguf | IQ3_M | 0.61GB |
qsaf_best.Q3_K.gguf | Q3_K | 0.64GB |
qsaf_best.Q3_K_M.gguf | Q3_K_M | 0.64GB |
qsaf_best.Q3_K_L.gguf | Q3_K_L | 0.68GB |
qsaf_best.IQ4_XS.gguf | IQ4_XS | 0.7GB |
qsaf_best.Q4_0.gguf | Q4_0 | 0.72GB |
qsaf_best.IQ4_NL.gguf | IQ4_NL | 0.72GB |
qsaf_best.Q4_K_S.gguf | Q4_K_S | 0.72GB |
qsaf_best.Q4_K.gguf | Q4_K | 0.75GB |
qsaf_best.Q4_K_M.gguf | Q4_K_M | 0.75GB |
qsaf_best.Q4_1.gguf | Q4_1 | 0.77GB |
qsaf_best.Q5_0.gguf | Q5_0 | 0.83GB |
qsaf_best.Q5_K_S.gguf | Q5_K_S | 0.83GB |
qsaf_best.Q5_K.gguf | Q5_K | 0.85GB |
qsaf_best.Q5_K_M.gguf | Q5_K_M | 0.85GB |
qsaf_best.Q5_1.gguf | Q5_1 | 0.89GB |
qsaf_best.Q6_K.gguf | Q6_K | 0.95GB |
qsaf_best.Q8_0.gguf | Q8_0 | 1.23GB |
Original model description:
base_model: meta-llama/Llama-3.2-1B-Instruct library_name: transformers model_name: qsaf_best tags: - generated_from_trainer - trl - sft licence: license
Model Card for qsaf_best
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ryusangwon/qsaf_best", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.4
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.