ner_model_3

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0953
  • Precision: 0.8317
  • Recall: 0.8443
  • F1: 0.8379
  • Accuracy: 0.9727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0649 1.0 2398 0.0958 0.8149 0.8358 0.8252 0.9710
0.0599 2.0 4796 0.0935 0.8156 0.8440 0.8296 0.9712
0.0459 3.0 7194 0.0953 0.8317 0.8443 0.8379 0.9727

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
106
Safetensors
Model size
65.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Rizzler-gyatt-69/ner_model_3

Finetuned
(239)
this model