|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import WhisperConfig |
|
from transformers import CLIPVisionConfig |
|
from typing import List |
|
from transformers import PretrainedConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class BaichuanConfig(PretrainedConfig): |
|
model_type = "baichuan" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=125696, |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
sparse_attention_heads=None, |
|
sparse_attention_layers=[], |
|
head_dim=None, |
|
attention_qkv_pack=True, |
|
attention_qkv_bias=False, |
|
use_norm_head=True, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
position_embedding_type="rope", |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
audio_config=None, |
|
visual_config=None, |
|
video_config=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads or self.num_attention_heads |
|
self.sparse_attention_heads = sparse_attention_heads |
|
self.sparse_attention_layers = sparse_attention_layers |
|
self.head_dim = head_dim or self.hidden_size // self.num_attention_heads |
|
self.attention_qkv_pack = attention_qkv_pack |
|
self.attention_qkv_bias = attention_qkv_bias |
|
self.use_norm_head = use_norm_head |
|
self.hidden_act = hidden_act |
|
self.position_embedding_type = position_embedding_type |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
assert self.position_embedding_type.lower() in ("rope", "alibi") |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
if audio_config is not None: |
|
self.audio_config = WhisperConfig(**audio_config) |
|
if visual_config is not None: |
|
self.visual_config = RQVAESIGLIPTransformerConfig(**visual_config) |
|
if video_config is not None: |
|
self.video_config = CLIPVisionConfig(**video_config) |
|
|
|
|
|
def to_diff_dict(self): |
|
data = super().to_diff_dict() |
|
data["model_type"] = self.model_type |
|
return data |
|
|
|
def get_rotary_base(self): |
|
if hasattr(self, "rotary_emb_base"): |
|
return self.rotary_emb_base |
|
else: |
|
return self.rope_theta |
|
|
|
|
|
class RQVAESiglipConfig(PretrainedConfig): |
|
model_type = "rqvaesiglip_model" |
|
def __init__( |
|
self, |
|
embed_dim=None, |
|
hidden_size=None, |
|
n_embed_visual=None, |
|
n_embed_semantic=None, |
|
latent_shape=None, |
|
code_shape_visual=None, |
|
code_shape_semantic=None, |
|
shared_codebook=None, |
|
restart_unused_codes=None, |
|
ddconfig=None, |
|
decay=0.99, |
|
latent_loss_weight=0.25, |
|
architectures=None, |
|
decoder_latent_shape=None, |
|
pretrained_model="google/siglip-large-patch16-256", |
|
last_n_layer_recon=22, |
|
last_n_layer_sem=2, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.hidden_size = hidden_size |
|
self.n_embed_visual = n_embed_visual |
|
self.n_embed_semantic = n_embed_semantic |
|
self.latent_shape = latent_shape |
|
self.code_shape_visual = code_shape_visual |
|
self.code_shape_semantic = code_shape_semantic |
|
self.shared_codebook = shared_codebook |
|
self.restart_unused_codes = restart_unused_codes |
|
self.ddconfig = ddconfig |
|
self.decay = decay |
|
self.latent_loss_weight = latent_loss_weight |
|
self.architectures = architectures |
|
self.decoder_latent_shape = decoder_latent_shape |
|
self.pretrained_model = pretrained_model |
|
self.last_n_layer_recon = int(last_n_layer_recon) |
|
self.last_n_layer_sem = int(last_n_layer_sem) |
|
|
|
|
|
class AttentionBlockConfig: |
|
def __init__(self, embed_dim=2560, n_head=40, mlp_bias=True, attn_bias=True, attn_pdrop=0.0, resid_pdrop=0.1): |
|
self.embed_dim = embed_dim |
|
self.n_head = n_head |
|
self.mlp_bias = mlp_bias |
|
self.attn_bias = attn_bias |
|
self.attn_pdrop = attn_pdrop |
|
self.resid_pdrop = resid_pdrop |
|
|
|
class AttentionStackConfig: |
|
def __init__(self, n_layer=6, block=AttentionBlockConfig()): |
|
self.n_layer = n_layer |
|
self.block = block |
|
|
|
|
|
class RQTransformerConfig(PretrainedConfig): |
|
model_type = "rqtransformer_model" |
|
def __init__( |
|
self, |
|
block_size=None, |
|
input_embed_dim_1=None, |
|
input_embed_dim_2=None, |
|
embed_dim=None, |
|
vocab_size=None, |
|
head=None, |
|
architectures=None, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.block_size = block_size |
|
self.input_embed_dim_1 = input_embed_dim_1 |
|
self.input_embed_dim_2 = input_embed_dim_2 |
|
self.embed_dim = embed_dim |
|
self.vocab_size = vocab_size |
|
self.head = head |
|
self.architectures = architectures |
|
|
|
|
|
class RQVAESIGLIPTransformerConfig(PretrainedConfig): |
|
model_type = "rqvaesigliptransformer_model" |
|
def __init__( |
|
self, |
|
rqvaesiglip=None, |
|
rqtransformer_visual=None, |
|
rqtransformer_semantic=None, |
|
hidden_size=None, |
|
architectures=None, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.rqvaesiglip = rqvaesiglip |
|
self.rqtransformer_visual = rqtransformer_visual |
|
self.rqtransformer_semantic = rqtransformer_semantic |
|
self.hidden_size = hidden_size |
|
self.architectures = architectures |
|
|
|
|
|
""" Siglip model configuration""" |
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json", |
|
} |
|
|
|
|
|
class SiglipTextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a |
|
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`SiglipModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 64): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
The id of the padding token in the vocabulary. |
|
bos_token_id (`int`, *optional*, defaults to 49406): |
|
The id of the beginning-of-sequence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 49407): |
|
The id of the end-of-sequence token in the vocabulary. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipTextConfig, SiglipTextModel |
|
|
|
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipTextConfig() |
|
|
|
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipTextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "siglip_text_model" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=64, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
|
|
|
|
pad_token_id=1, |
|
bos_token_id=49406, |
|
eos_token_id=49407, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.attention_dropout = attention_dropout |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "siglip": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class SiglipVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a |
|
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of channels in the input images. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipVisionConfig, SiglipVisionModel |
|
|
|
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipVisionConfig() |
|
|
|
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipVisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "siglip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=16, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "siglip": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class SiglipConfig(PretrainedConfig): |
|
r""" |
|
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to |
|
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`SiglipTextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import SiglipConfig, SiglipModel |
|
|
|
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipConfig() |
|
|
|
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig |
|
>>> from transformers import SiglipTextConfig, SiglipVisionConfig |
|
|
|
>>> # Initializing a SiglipText and SiglipVision configuration |
|
>>> config_text = SiglipTextConfig() |
|
>>> config_vision = SiglipVisionConfig() |
|
|
|
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "siglip" |
|
|
|
def __init__(self, text_config=None, vision_config=None, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") |
|
|
|
self.text_config = SiglipTextConfig(**text_config) |
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
|
|
self.initializer_factor = 1.0 |
|
|
|
@classmethod |
|
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): |
|
r""" |
|
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision |
|
model configuration. |
|
|
|
Returns: |
|
[`SiglipConfig`]: An instance of a configuration object |
|
""" |
|
|
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from transformers import AutoConfig |
|
config = AutoConfig.from_pretrained("./", trust_remote_code=True) |
|
print(config) |