emotion-model2_2
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9659
- Accuracy: 0.6453
- F1: 0.6339
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.385 | 1.0 | 59 | 1.3680 | 0.3248 | 0.2199 |
1.3429 | 2.0 | 118 | 1.2004 | 0.4145 | 0.2987 |
1.2515 | 3.0 | 177 | 1.1461 | 0.5513 | 0.5504 |
1.1768 | 4.0 | 236 | 1.1002 | 0.5726 | 0.5553 |
1.1775 | 5.0 | 295 | 1.0730 | 0.5171 | 0.4846 |
1.1112 | 6.0 | 354 | 1.0043 | 0.6111 | 0.5964 |
1.0881 | 7.0 | 413 | 0.9934 | 0.5940 | 0.5701 |
1.0876 | 8.0 | 472 | 0.9659 | 0.6453 | 0.6339 |
1.0504 | 9.0 | 531 | 0.9728 | 0.6197 | 0.6084 |
1.0362 | 10.0 | 590 | 0.9636 | 0.6368 | 0.6252 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Semhal2024/emotion-model2_2
Base model
FacebookAI/xlm-roberta-base