|
--- |
|
base_model: |
|
- facebook/dinov2-large |
|
license: apache-2.0 |
|
pipeline_tag: image-feature-extraction |
|
library_name: transformers |
|
--- |
|
|
|
# Model Card for CoMP-MM-1B |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This is an VFM that supports <b>native image resolution inputs</b>, continually pre-trained from [DINOv2](https://huggingface.co/facebook/dinov2-large). |
|
|
|
## Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/SliMM-X/CoMP-MM |
|
- **Paper:** https://arxiv.org/abs/2503.18931 |
|
- **Project Page:** https://slimm-x.github.io/comp |
|
|
|
## How to Get Started with the Model |
|
|
|
Install the github repo, and use the code below to get started with the model. |
|
|
|
```python |
|
import torch |
|
from slimm.model.processor import SliMMQwen2VLProcessor |
|
from slimm.model.utils_vl import process_vision_info |
|
from slimm.model.vision_encoder import CoMPDinov2Model |
|
from PIL import Image |
|
|
|
model_path = "SliMM-X/CoMP-DINOv2-Large" |
|
|
|
model = CoMPDinov2Model.from_pretrained( |
|
model_path, torch_dtype="auto", device_map="cuda", w_merger=False |
|
).to(torch.bfloat16) |
|
|
|
processor = SliMMQwen2VLProcessor.from_pretrained(model_path) |
|
|
|
image_input = Image.open("https://slimm-x.github.io/comp/figs/teaser.png") |
|
inputs = processor( |
|
images=image_input, |
|
return_tensors="pt", |
|
) |
|
|
|
inputs = inputs.to("cuda") |
|
output_feat = model(inputs.pixel_values.to(torch.bfloat16), inputs.image_grid_thw) |
|
print(output_feat) |
|
``` |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@article{comp2025, |
|
title={CoMP: Continual Multimodal Pre-training for Vision Foundation Models}, |
|
author={Chen, Yitong and Meng, Lingchen and Peng, Wujian and Wu, Zuxuan and Jiang, Yu-Gang}, |
|
year={2025}, |
|
journal={arXiv preprint arXiv:2503.18931}, |
|
} |
|
``` |