|
--- |
|
base_model: |
|
- google/siglip2-so400m-patch16-384 |
|
- google/siglip2-so400m-patch16-256 |
|
language: |
|
- en |
|
license: other |
|
license_name: other |
|
license_link: https://github.com/TencentARC/TokLIP/blob/main/LICENSE |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- Tokenizer |
|
- CLIP |
|
- UnifiedMLLM |
|
--- |
|
|
|
# TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation |
|
|
|
<h5 align="center"> |
|
|
|
[](https://arxiv.org/abs/2505.05422) |
|
[](https://github.com/TencentARC/TokLIP) |
|
[](https://huggingface.co/TencentARC/TokLIP) |
|
[](https://github.com/TencentARC/TokLIP/blob/main/LICENSE) |
|
<br> |
|
|
|
</h5> |
|
|
|
Welcome to the official code repository for "[**TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation**](https://arxiv.org/abs/2505.05422)". |
|
|
|
Your star means a lot to us in developing this project! ⭐⭐⭐ |
|
|
|
|
|
## 📰 News |
|
* [2025/08/18] 🚀 Check our latest results on arXiv ([PDF](https://arxiv.org/pdf/2505.05422))! |
|
* [2025/08/18] 🔥 We release TokLIP XL with 512 resolution [🤗 TokLIP_XL_512](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_XL_512.pt)! |
|
* [2025/08/05] 🔥 We release the training code! |
|
* [2025/06/05] 🔥 We release the code and models! |
|
* [2025/05/09] 🚀 Our paper is available on arXiv! |
|
|
|
|
|
## 👀 Introduction |
|
|
|
<img src="https://raw.githubusercontent.com/TencentARC/TokLIP/main/docs/TokLIP.png" alt="TokLIP" style="zoom:50%;" /> |
|
|
|
- We introduce TokLIP, a visual tokenizer that enhances comprehension by **semanticizing** vector-quantized (VQ) tokens and **incorporating CLIP-level semantics** while enabling end-to-end multimodal autoregressive training with standard VQ tokens. |
|
|
|
- TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. |
|
|
|
- Unlike previous approaches (e.g., VILA-U) that *discretize high-level features*, TokLIP **disentangles training objectives for comprehension and generation**, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. |
|
|
|
|
|
## 🔧 Installation |
|
```bash |
|
conda create -n toklip python=3.10 -y |
|
conda activate toklip |
|
git clone https://github.com/TencentARC/TokLIP |
|
pip install --upgrade pip |
|
pip install -r requirements.txt |
|
``` |
|
|
|
|
|
## ⚙️ Usage |
|
|
|
### Model Weight |
|
|
|
| Model | Resolution | VQGAN | IN Top1 | COCO TR@1 | COCO IR@1 | Weight | |
|
| :-------: | :--------: | :----------------------------------------------------------: | :-----: | :-------: | :-------: | :----------------------------------------------------------: | |
|
| TokLIP-S | 256 | [LlamaGen](https://huggingface.co/peizesun/llamagen_t2i/blob/main/vq_ds16_t2i.pt) | 76.4 | 64.06 | 48.46 | [🤗 TokLIP_S_256](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_S_256.pt) | |
|
| TokLIP-L | 384 | [LlamaGen](https://huggingface.co/peizesun/llamagen_t2i/blob/main/vq_ds16_t2i.pt) | 80.0 | 68.00 | 52.87 | [🤗 TokLIP_L_384](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_L_384.pt) | |
|
| TokLIP-XL | 512 | [IBQ](https://huggingface.co/TencentARC/IBQ-Tokenizer-262144/blob/main/imagenet256_262144.ckpt) | 80.8 | 69.40 | 53.77 | [🤗 TokLIP_XL_512](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_XL_512.pt) | |
|
|
|
|
|
### Training |
|
|
|
1. Please refer to [img2dataset](https://github.com/rom1504/img2dataset) to prepare the WebDataset required for training. You may choose datasets such as **CC3M**, **CC12M**, or **LAION**. |
|
|
|
2. Prepare the teacher models using `src/covert.py`: |
|
```bash |
|
cd src |
|
TIMM_MODEL='original' python covert.py --model_name 'ViT-SO400M-16-SigLIP2-256' --save_path './model/siglip2-so400m-vit-l16-256.pt' |
|
TIMM_MODEL='original' python covert.py --model_name 'ViT-SO400M-16-SigLIP2-384' --save_path './model/siglip2-so400m-vit-l16-384.pt' |
|
``` |
|
3. Train TokLIP using the scripts `src\train_toklip_256.sh` and `src\train_toklip_384.sh`. You need to set `--train-data` and `--train-num-samples` arguments accordingly. |
|
|
|
|
|
### Evaluation |
|
|
|
Please first download the TokLIP model weights. |
|
|
|
We provide the evaluation scripts for ImageNet classification and MSCOCO Retrieval in `src\test_toklip_256.sh`, `src\test_toklip_384.sh`, and `src\test_toklip_512.sh`. |
|
|
|
Please revise the `--pretrained`, `--imagenet-val`, and `--coco-dir` with your specific paths. |
|
|
|
### Inference |
|
|
|
We provide the inference example in `src/inference.py`. |
|
|
|
```shell |
|
cd src |
|
python inference.py --model-config 'ViT-SO400M-16-SigLIP2-384-toklip' --pretrained 'YOUR_TOKLIP_PATH' |
|
``` |
|
|
|
### Model Usage |
|
|
|
We provide `build_toklip_encoder` function in `src/create_toklip.py`, you could directly load TokLIP with `model`, `image_size`, and `model_path` parameters. |
|
|
|
|
|
## 🔜 TODOs |
|
- [x] Release training codes. |
|
- [x] Release TokLIP-XL with 512 resolution. |
|
|
|
|
|
## 📂 Contact |
|
If you have further questions, please open an issue or contact <[email protected]>. |
|
|
|
Discussions and potential collaborations are also welcome. |
|
|
|
|
|
## 🙏 Acknowledgement |
|
This repo is built upon the following projects: |
|
|
|
* [OpenCLIP](https://github.com/mlfoundations/open_clip) |
|
* [LlamaGen](https://github.com/FoundationVision/LlamaGen) |
|
* [DeCLIP](https://github.com/Sense-GVT/DeCLIP) |
|
* [SEED-Voken](https://github.com/TencentARC/SEED-Voken) |
|
|
|
We thank the authors for their codes. |
|
|
|
|
|
## 📝 Citation |
|
Please cite our work if you use our code or discuss our findings in your own research: |
|
```bibtex |
|
@article{lin2025toklip, |
|
title={Toklip: Marry visual tokens to clip for multimodal comprehension and generation}, |
|
author={Lin, Haokun and Wang, Teng and Ge, Yixiao and Ge, Yuying and Lu, Zhichao and Wei, Ying and Zhang, Qingfu and Sun, Zhenan and Shan, Ying}, |
|
journal={arXiv preprint arXiv:2505.05422}, |
|
year={2025} |
|
} |
|
``` |