Text Generation
Safetensors
English
llama
conversational
File size: 1,656 Bytes
966245b
 
 
 
 
 
 
 
1fbb3c8
966245b
351889c
5413c84
351889c
b51c988
5413c84
 
 
 
351889c
 
 
5413c84
 
 
 
351889c
5413c84
 
 
 
 
 
 
 
 
 
 
351889c
5413c84
 
 
 
351889c
5413c84
 
 
966245b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: llama3.1
datasets:
- TheFinAI/Fino1_Reasoning_Path_FinQA
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
---
# πŸ¦™ Fino1-8B

**Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
Check our paper arxiv.org/abs/2502.08127 for more details.

## πŸ“Œ Model Details  
- **Model Name**: `Fino1-8B`  
- **Base Model**: `Meta Llama 3.1 8B Instruct`  
- **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA` Derived from FinQA dataset.  
- **Training Method**: SFT and RF  
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`  
- **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`  


## πŸ“Š Training Configuration  
- **Training Hardware**: `GPU: [e.g., 4xH100]`  
- **Batch Size**: `[e.g., 16]`  
- **Learning Rate**: `[e.g., 2e-5]`  
- **Epochs**: `[e.g., 3]`  
- **Optimizer**: `[e.g., AdamW, LAMB]`  

## πŸ”§ Usage  
To use `Fino1-8B` with Hugging Face's `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "TheFinAI/Fino1-8B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

input_text = "What is the results of 3-5?"
inputs = tokenizer(input_text, return_tensors="pt")

output = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))