Built with Axolotl

See axolotl config

axolotl version: 0.6.0

# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout d425d5d3c3ca7644a9da8ed93c3d03f4be0c4854
# pip3 install packaging ninja huggingface_hub[cli]
# pip install "cut-cross-entropy[transformers] @ git+https://github.com/apple/ml-cross-entropy.git"
# pip3 install -e '.[flash-attn,deepspeed]'
# apt update && apt install libopenmpi-dev 
# pip install mpi4py
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess qwen-32b-rp.yml
# accelerate launch -m axolotl.cli.train qwen-32b-rp.yml
# python -m axolotl.cli.merge_lora qwen-32b-story.yml --lora-on-cpu
# huggingface-cli upload ToastyPigeon/new-ms-rp-test-v0-v3 train-workspace/merged . --exclude "*.md"

# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && git checkout d8b4027200de0fe60f4ae0a71272c1a8cb2888f7 && pip3 install packaging ninja huggingface_hub[cli,hf_transfer] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key

# Model
base_model: Qwen/Qwen2.5-32B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:

# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/qwen32-rp-ws
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 4

# Data
sequence_len: 4096 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
  - path: ToastyPigeon/fujin-filtered-instruct
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    split: train[:500]
  - path: ToastyPigeon/some-rp-v2-4k
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    split: train[:1000]
warmup_ratio: 0.05
shuffle_merged_datasets: true
sample_packing: true
#pad_to_sequence_len: true

# Batching
num_epochs: 1
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1

# Evaluation
val_set_size: 100
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true

save_safetensors: true

# WandB
wandb_project: Qwen-Test
#wandb_entity:

gradient_checkpointing: 'unsloth'
#gradient_checkpointing_kwargs:
#  use_reentrant: false

unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

# LoRA
adapter: qlora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.5
lora_target_linear: 
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
#peft_layers_to_transform: [35,36,37,38,39]

# Optimizer
optimizer: paged_ademamix_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
cosine_min_lr_ratio: 0.5
weight_decay: 0.01
max_grad_norm: 1.0

# Misc
train_on_inputs: false
#group_by_length: true
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:

plugins:
  - axolotl.integrations.liger.LigerPlugin
#  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

gc_steps: 10
seed: 69

qwen32-rp-ws

This model is a fine-tuned version of Qwen/Qwen2.5-32B-Instruct on the ToastyPigeon/fujin-filtered-instruct and the ToastyPigeon/some-rp-v2-4k datasets. It achieves the following results on the evaluation set:

  • Loss: 2.3669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 69
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 6
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.7161 0.0075 1 2.5700
2.5245 0.1057 14 2.4011
2.4595 0.2113 28 2.3840
2.2935 0.3170 42 2.3784
2.4266 0.4226 56 2.3750
2.3834 0.5283 70 2.3725
2.5289 0.6340 84 2.3709
2.3804 0.7396 98 2.3695
2.3634 0.8453 112 2.3681
2.5022 0.9509 126 2.3669

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ToastyPigeon/qwen32-rp-ws

Base model

Qwen/Qwen2.5-32B
Adapter
(24)
this model

Dataset used to train ToastyPigeon/qwen32-rp-ws