med-gpt-oss-20b

A fine-tuned version of OpenAI's GPT-OSS-20B model for medical reasoning and instruction following.

Model Details

  • Base Model: openai/gpt-oss-20B
  • Model Type: Causal Language Model
  • Languages: English
  • License: Apache 2.0

Usage

Main Model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the main model
model = AutoModelForCausalLM.from_pretrained(
    "Tonic/med-gpt-oss-20b",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("Tonic/med-gpt-oss-20b")

# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Training Information

Training Configuration

  • Base Model: openai/gpt-oss-20b
  • Dataset: FreedomIntelligence/medical-o1-reasoning-SFT
  • Training Config: GPT-OSS Configuration
  • Trainer Type: SFTTrainer

Training Parameters

  • Batch Size: 4
  • Gradient Accumulation: 16
  • Learning Rate: 2e-4
  • Max Epochs: 1
  • Sequence Length: 2048

Training Infrastructure

  • Hardware: GPU (H100/A100)
  • Monitoring: Trackio integration
  • Experiment: med-track

Model Architecture

This is a fine-tuned version of the SmolLM3-3B model with the following specifications:

  • Base Model: SmolLM3-3B
  • Parameters: ~3B
  • Context Length: 2048
  • Languages: English, French
  • Architecture: Transformer-based causal language model

Performance

The model provides:

  • Medical Reasoning: High-quality medical reasoning
  • Conversation: Medical instruction following

Limitations

  1. Context Length: Limited by the model's maximum sequence length
  2. Bias: May inherit biases from the training data
  3. Factual Accuracy: May generate incorrect or outdated information
  4. Safety: Should be used responsibly with appropriate safeguards

Training Data

The model was fine-tuned on:

  • Dataset: FreedomIntelligence/medical-o1-reasoning-SFT
  • Size: ~20K samples
  • Format: reasoning
  • Languages: English

Monitoring

image/png

Citation

If you use this model in your research, please cite:

@misc{med_gpt_oss_20B,
  title={{med-gpt-oss-20b}},
  author={Joseph "Tonic" Pollack},
  year={2024},
  url={https://huggingface.co/Tonic/med-gpt-oss-20b}
}

License

This model is licensed under the Apache 2.0 License.

Acknowledgments

  • Base Model: SmolLM3-3B by HuggingFaceTB
  • Training Framework: PyTorch, Transformers, PEFT
  • Monitoring: Trackio integration
  • Quantization: torchao library

Support

For questions and support:

  • Open an issue on the Hugging Face repository
  • Check the model documentation
  • Review the training logs and configuration

Repository Structure

Tonic/med-gpt-oss-20b/
├── README.md (this file)
├── config.json
├── pytorch_model.bin
├── tokenizer.json
└── tokenizer_config.json

Usage Examples

Text Generation

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Tonic/med-gpt-oss-20b")
tokenizer = AutoTokenizer.from_pretrained("Tonic/med-gpt-oss-20b")

text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Conversation

def chat_with_model(prompt, max_length=100):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=max_length)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

response = chat_with_model("Hello, how are you today?")
print(response)

Advanced Usage

# With generation parameters
outputs = model.generate(
    **inputs,
    max_new_tokens=100,
    temperature=0.7,
    top_p=0.9,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id
)

Monitoring and Tracking

This model was trained with comprehensive monitoring:

Deployment

Requirements

pip install torch transformers accelerate

Hardware Requirements

  • Main Model: GPU with 8GB+ VRAM recommended

Changelog

  • v1.0.0: Initial release with fine-tuned model
Downloads last month
14
Safetensors
Model size
20.9B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Tonic/med-gpt-oss-20b

Base model

openai/gpt-oss-20b
Finetuned
(175)
this model
Quantizations
2 models

Dataset used to train Tonic/med-gpt-oss-20b