Triangle104's picture
Adding Evaluation Results (#1)
c0bbd6b verified
metadata
license: apache-2.0
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - Qwen/Qwen2.5-7B-Instruct-1M
  - huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated
model-index:
  - name: Q2.5-Instruct-1M_Harmony
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 60.38
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 33.63
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 32.1
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.73
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 18.1
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.4
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Instruct-1M_Harmony
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated
  - model: Qwen/Qwen2.5-7B-Instruct-1M
merge_method: slerp
base_model: Qwen/Qwen2.5-7B-Instruct-1M
dtype: bfloat16
parameters:
  t: [0, 0.5, 1, 0.5, 0]

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 31.89
IFEval (0-Shot) 60.38
BBH (3-Shot) 33.63
MATH Lvl 5 (4-Shot) 32.10
GPQA (0-shot) 9.73
MuSR (0-shot) 18.10
MMLU-PRO (5-shot) 37.40