Llama-3.2-1B-Instruct LoRA Instruction Classifier
Model Description
- Base Model: Llama-3.2-1B
- Adapter Method: LoRA (Low-Rank Adaptation)
- Task: Instruction classification into 10 labels
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("Turalll/llama-1b-lora-instruct-classifier")
# Load the base model (you must have access to LLaMA-1B)
base_model = AutoModelForSequenceClassification.from_pretrained("path_to_llama-3.2-1B-Instruct_base_model", num_labels=10)
# Load the LoRA adapter
model = PeftModel.from_pretrained(base_model, "Turalll/llama-1b-lora-instruct-classifier")
# Example inference
text = "Your input text here"
## Custom label_ids:labels map
id2id = {
0: "Health and Wellbeing",
1: "Cinema",
2: "Environmental Science",
3: "Software Development",
4: "Fashion",
5: "Career Development",
6: "Culinary Guide",
7: "Cybersecurity",
8: "Economics",
9: "Music"
}
## Tokenize the input
inputs = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=128,
return_tensors="pt"
)
## Move inputs to the same device as the model
inputs = {k: v.to(device) for k, v in inputs.items()}
## Get predictions
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
## Map predicted class ID to label
predicted_label = id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Turalll/llama-3.2-1B-lora-instruct-classifier
Base model
meta-llama/Llama-3.2-1B-Instruct