MATH_training_QwQ_32B_Preview

This model is a fine-tuned version of Qwen/Qwen2.5-32B-Instruct on the MATH_training_Qwen_QwQ_32B_Preview dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.2322 0.1564 200 0.2143
0.1419 0.3127 400 0.1674
0.1137 0.4691 600 0.1510
0.1457 0.6255 800 0.1406
0.0953 0.7819 1000 0.1333
0.1201 0.9382 1200 0.1268
0.0899 1.0946 1400 0.1289
0.0548 1.2510 1600 0.1269
0.0323 1.4073 1800 0.1240
0.0414 1.5637 2000 0.1207
0.0375 1.7201 2200 0.1202
0.0512 1.8765 2400 0.1201

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for UWNSL/Qwen2.5-32B-Instruct_Long_CoT_lora

Base model

Qwen/Qwen2.5-32B
Adapter
(24)
this model

Collection including UWNSL/Qwen2.5-32B-Instruct_Long_CoT_lora